COMMUNITY ACQUIRED PNEUMONIA: DIAGNOSIS AND TREATMENT DURING THE COVID-19 ERA

Tuesday, January 26, 2021 1:00 p.m. – 2:00 p.m. ET

Antonio Anzueto, MD

Professor, Department of Medicine University of Texas San Antonio Chief, Pulmonary Section The South Texas Veterans Health Care System

Norman Moore, PhD - Moderator/Speaker Director of Infectious Disease and Scientific Affairs Abbott Rapid Diagnostics This webinar is sponsored by:

Thermo Fisher

The speaker is presenting on behalf of Abbott. The information presented is consistent with applicable FDA guidelines. This program provides P.A.C.E. and AARC continuing education credits. This provides does not provide continuing medical education (CME) credits.

Program Objectives

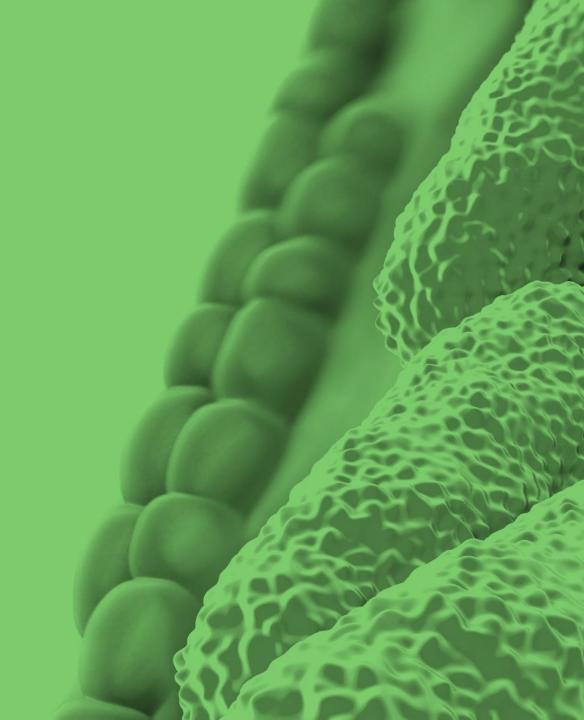
- Describe the relationship between COVID-19 and pneumonia and the associated public health risks
- Examine experiences and best practices for evaluating and managing COVID-19 patients with pneumonia
- Explain the guidance and practical clinical value of urinary antigen testing (UAT), including mortality reduction and antibiotic stewardship
- Discuss UAT performance characteristics and potential value related to laboratory workflow in times of strained respiratory testing resource

COMMUNITY ACQUIRED PNEUMONIA: DIAGNOSIS AND TREATMENT DURING THE COVID-19 ERA

Antonio Anzueto University of Texas Health Science Center San Antonio, USA

Faculty Disclosures

Dr. Anzueto


Personal financial interests in commercial entities that are relevant to my presentation:

• Being compensated by ABBOTT to give this presentation

Non-commercial, non-governmental interests relevant to my presentation :

- Member of the ATS/ERS Task force on COPD and COPD Exacerbations,
- Member of the ATS/IDSA CAP Guidelines committee
- GOLD Past Member of the Executive and current member Scientific Committee

CASE STUDY

55-year-old male presented to ED complaining 2-3 days of left chest pain, cough and chills.

Medications: Metoprolol and ASA 650 mg/day

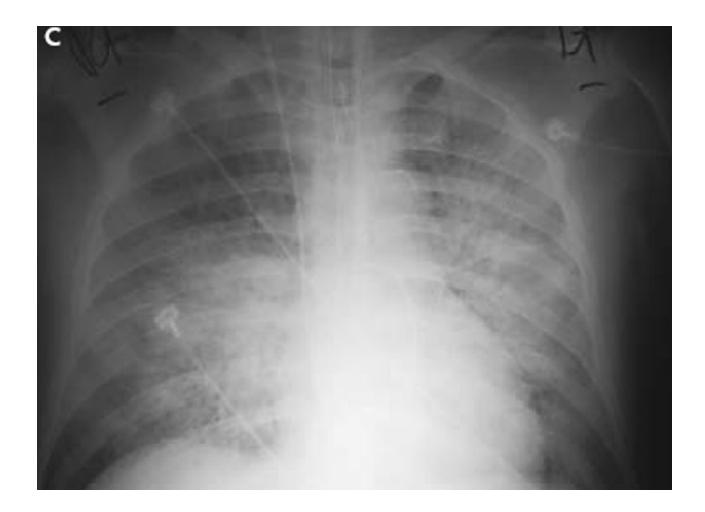
Physical Examination:

- Fever 101.7°F, HR 87/bpm, RR 32/min, BP 70/40
- Bilateral Crackles and dullness at bases

Other Information:

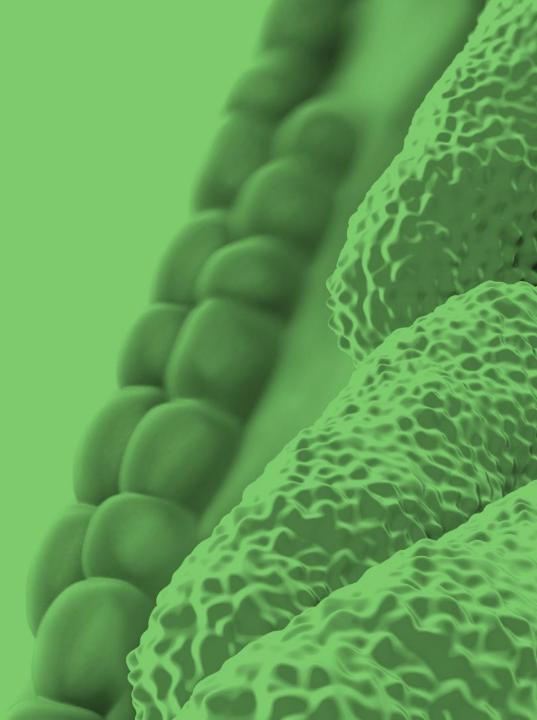
- WBC 14.6 x 10³/mL
- Oxygen Saturation at rest 85%

What questions do we need to ask?



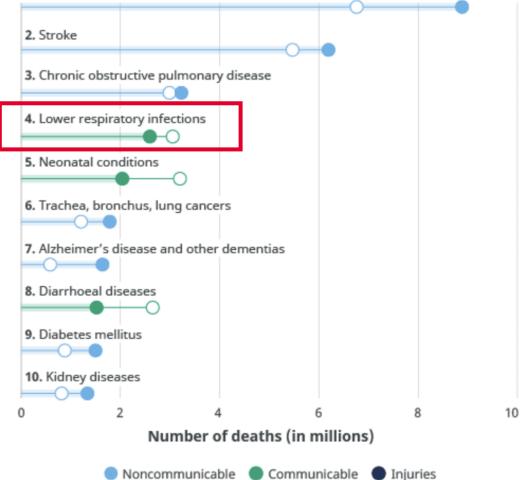
What questions do we need to ask?

- Any Travel history?
- Any use of electronic cigarette or Vaping?
- Sick contacts ?


Chest Radiograph

Respiratory Viral PCR NEGATIVE

Need to order COVID Test PUI


CAP and Risk Factors

Top 10 Global Causes of Death, 2019

2000 2019

Ischaemic heart disease

World Health Organization Global Health Estimates. The top 10 causes of death. 2019 <u>https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death</u>. Accessed Jan 20, 2021.

Defining CAP, HCAP, HAP, and VAP

CAP (Community Acquired Pneumonia)

• Signs and symptoms of pneumonia with radiographic confirmation

HCAP (Healthcare-Associated Pneumonia)

- Prior hospitalization (within 90 days)
- Resided in nursing home or long-term care facility
- Received recent IV antibiotics (within 30 days)

Kalil AC, et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society, *Clinical Infectious Diseases*, Volume 63, Issue 5, 1 September 2016, Pages e61–e111, https://doi.org/10.1093/cid/ciw353 Metlay JP, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. *Am J Respir Crit Care Med*. 2019;200(7):e45-e67.

CAP

- Etiological agent is often not isolated or is identified late in course of treatment¹
- Broad-spectrum antibiotics are prescribed early and empirically to reduce mortality²
- Inappropriate antibiotic use can cause antimicrobial resistance and C. difficile infections³
- Pathogen identification allows for targeted treatment³

^{1.} Musher DM, et al. Can an etiologic agent be identified in adults who are hospitalized for community-acquired pneumonia: results of a one-year study. J Infect. 2013 Jul;67(1):11-8. doi: 10.1016/j.jinf.2013.03.003. Epub 2013 Mar 19.

^{2.} Houck PM, Bratzler DW, Nsa W, Ma A, Bartlett JG. Timing of antibiotic administration and outcomes for Medicare patients hospitalized with community-acquired pneumonia. Arch Intern Med. 2004 Mar 22;164(6):637-44.

^{3.} Dellit TH, et al. IDSA/SHEA guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007 Jan 15;44(2):159-77. doi: 10.1086/510393. Epub 2006 Dec 13.

Risk factors for community-acquired pneumonia in adults in Europe: a literature review

Antoni Torres,¹ Willy E Peetermans,² Giovanni Viegi,^{3,4} Francesco Blasi⁵

Table 4Bundles for lifestyle interventions to reduce the risk of CAP in adults

Risk factor	Evidence	Recommendation
Smoking	Risk of CAP increased in current and former smokers (9 studies) ^{19–23 38 42 46 47}	Smoking cessation
Alcohol consumption	Risk of CAP increased with high consumption or history of alcohol abuse (4 studies) ^{21 23 38 47}	Reduce alcohol consumption
Nutritional status	Being underweight was generally associated with an increased risk of CAP (4 studies) ^{23 38 44 47}	Dietary advice to ensure good nutritional status
Contact with children	Regular contact with children increased the risk of CAP (3 studies) ^{23 38 44}	Avoid contacts with children with lower respiratory tract infections
Dental hygiene	Risk of CAP decreased in individuals with a recent (within past year) dental visit (2 studies) ^{23 38}	Ensure regular dental visits
Vaccination against influenza and Streptococcus pneumoniae	Current guidelines ^{88 89}	Ensure compliance with guidelines

CAP, community-acquired pneumonia.

Torres A, et al. Risk factors for community-acquired pneumonia in adults in Europe: a literature review. Thorax. 2013;68(11):1057-1065.

Differential Dx of COVID-19 and Pneumonia

	COVID-19 n = 304	SN-CAP n = 138	P-value
Age, mean (SD), y	61.5(13.3%)	61.6(16.1)	0.921
Female	166 (54.61%)	56(40.58%)	< 0.01
Male	138 (45.39%)	82(59.42%)	
Signs and symptoms a	t admission, patient no		
Fever	172 (56.58%)	42 (30.43)	< 0.01
Cough	134 (44.08%)	74 (53.62)	0.06
Dyspnea	29 (9.54%)	3 (2.17%)	< 0.01
Fatigue	32 (10.53)	5 (3.62%)	0.02
Chest distress	24 (7.89%)	3 (2.17%)	0.02
Expectoration	10 (3.29%)	53 (38.41%)	< 0.01
Sore throat	5 (1.64%)	5 (3.62%)	0.2
Diarrhea	5 (1.64%)	1 (0.72%)	0.4
Asymptomatic	39 (12.83%)	6 (4.35%)	< 0.01
Chronic medical illness	, patient no		
Hypertension	83 (27.3%)	34 (24.64%)	0.56
CAD	21 (6.91%)	8 (5.8%)	0.66
Diabetes	40 (13.16%)	25 (18.12%)	0.17
COPD	7 (2.3%)	27 (19.57%)	< 0.01
Renal failure	27 (8.88%)	18 (13.04%)	0.18
Malignancy	3 (0.99%)	15 (10.87%)	< 0.01

	COVID-19 n = 304	SN-CAP n = 138	P-value
Laboratory result abnorm	alities, patient no		
WBC count, <3.7 × 109/L	42 (13.82%)	4 (2.9%)	< 0.01
Lymphocyte count, <0.8 × 109/L	97 (41.91%)	68 (49.28%)	< 0.01
Lymphocyte ratio <20%	134 (44.08%)	93 (67.39%)	< 0.01
Neutrophil count, x109/L	51 (16.78%)	37 (26.81%)	0.01
Platelet <85 × 109/L	15 (4.93%)	7 (5.07%)	0.95
CRP > 10 mg/L	127 (41.78%)	98 (71.01%)	< 0.01
Albumin <35 g/L	139 (45.72%)	95 (68.84%)	< 0.01
ALT/AST abnormal	99 (32.57%)	42 (30.43%)	0.66
Creatinine >73 µmol/L	60 (19.74%)	28 (20.29%)	0.89
BUN, >8 mmol/L	87 (28.62%)	30 (21.74%)	0.13
LDH >250 U/L	42 (13.82%)	60 (43/48%)	< 0.01
Creatine kinase > 195 U/L	21 (6.91%)	6 (4.35%)	0.3
Troponin-I >0.4 ug/L	49 (16.12%)	25 (18.12%)	0.6
Patients tested for procalcitonin, no.	31	117	
Procalcitonin >0.05 ng/mL	13 (41.94%)	55 (47.01%)	0.61

SN-CAP, SARS-CoV-2 negative-community acquired pneumonia

Zhou Y, et al. COVID-19 Is Distinct From SARS-CoV-2-Negative Community-Acquired Pneumonia. Front Cell Infect Microbiol. 2020;10:322.


Poll Question #1

The following tests are performed to detect pathogens for community acquired pneumonia (CAP) in my facility (select all that apply):

- a. Blood culture
- b. Sputum culture
- c. Sputum gram stain
- d. Urinary antigen testing (UAT)
- e. Molecular pneumonia panel
- f. ELISA
- g. Other
- h. We send out all pneumonia testing
- i. Don't know or n/a

Pathogens:

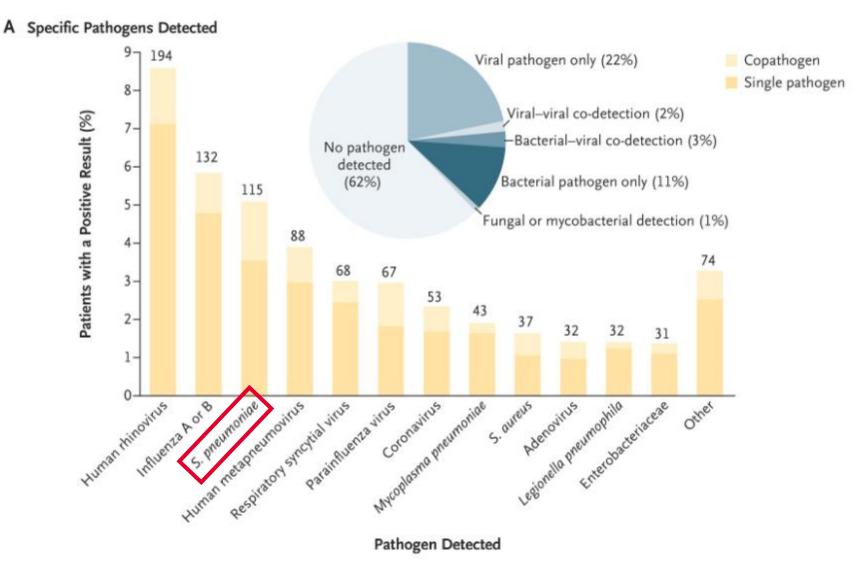
S. pneumoniae and Legionella

S. pneumoniae

- Leading cause of CAP¹
- Leading cause of pneumonia mortality¹
- May cause secondary bacteremia^{2,3}
- Difficult to diagnose using traditional culture methods⁴⁻⁶
 - Long turnaround time
 - Difficult to obtain high-quality sputum sample
 - Blood cultures have low sensitivity
 - Empiric antibiotics impact yield

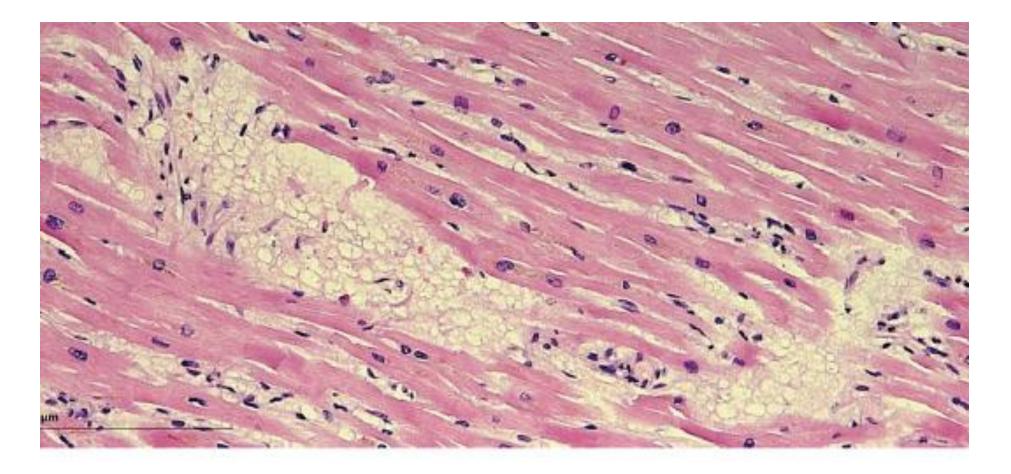
- 1. Ramirez JA, File TM, and Bond S. Overview of community-acquired pneumonia in adults. UpToDate. December 28, 2020. <u>https://www.uptodate.com/contents/overview-of-community-acquired-pneumonia-in-adults/print</u>.
- 2. File TM Jr, et al. What can we learn from the time course of untreated and partially treated community-onset Streptococcus pneumoniae pneumonia? A clinical perspective on superiority and noninferiority trial designs for mild community-acquired pneumonia. *Clin Infect* Dis. 2008;47 Suppl 3:S157-S165.
- 3. Pneumococcal Disease. Centers for Disease Control and Prevention. <u>https://www.cdc.gov/pneumococcal/clinicians/clinical-features.html</u>. Published September 6, 2017. Accessed December 14, 2020.
- 4. Vernet G, et al. Laboratory-based diagnosis of pneumococcal pneumonia: state of the art and unmet needs. *Clin Microbiol Infect*. 2011;17 Suppl 3:1-13.
- 5. Blaschke AJ. Interpreting assays for the detection of Streptococcus pneumoniae. Clin Infect Dis. 2011;52 Suppl 4(Suppl 4):S331-S337.
- 6. Sordé R, et al. Current and potential usefulness of pneumococcal urinary antigen detection in hospitalized patients with community-acquired pneumonia to guide antimicrobial therapy. Arch Intern Med. 2011;171(2):166-172.

Etiology of CAP


AMBULATORY PATIENTS	HOSPITALIZED (NON-ICU)	SEVERE (ICU)
S. pneumoniae	S. pneumoniae	S. pneumoniae
M. pneumoniae	M. pneumoniae	H. influenzae
H. influenzae	C. pneumoniae	<i>Legionella</i> spp.
C. pneumoniae	H. influenzae	Gram-negative bacilli
Respiratory viruses [*]	<i>Legionella</i> spp.	S. aureus
	Aspiration	Viral: H1N1
	Respiratory viruses*	

ICU = Intensive care unit

*Influenza A and B, adenovirus, respiratory syncytial virus, and parainfluenza

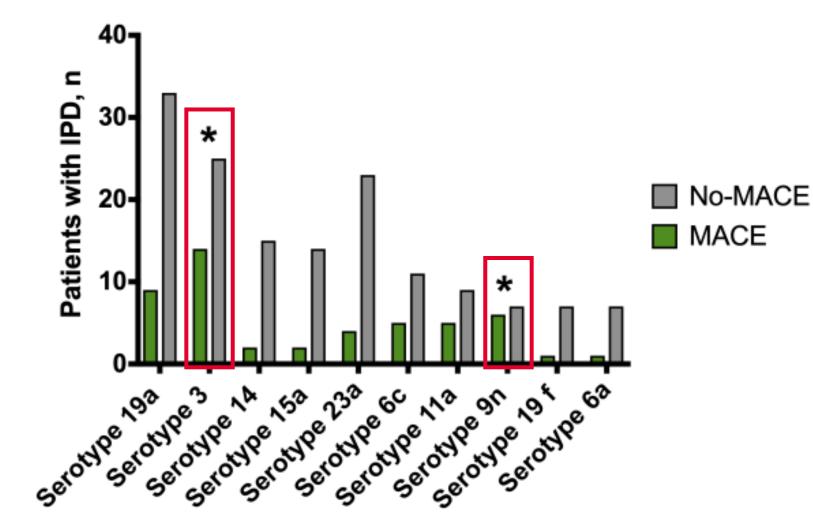

Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007 Mar 1;44 Suppl 2:S27-S72.

Etiology of Community-Acquired Pneumonia

Jain S, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415-427.

Invasive Pneumococcal Disease Cardiac lesion

Brown AO, et al PLoS Pathog 2014; 10: e1004383.


Mortality of Hospital Admitted Patients with Invasive Pneumococcal Disease

1952–62	1966–95	1995–97
1	1	1
13%	12%	12%
Mortality ¹	Mortality ²	Mortality ³
n = 1130	n = 4432	n = 5837

Although the management of critically ill patients has improved by far and there are no resistance problems with regard to *S. pneumoniae*, mortality of IPD remains tremendous.

- 1. Austrian R, Gold J. Ann Intern Med 1964;60:759-76.
- 2. Fine MJ, et al. JAMA 1996;275(2):134-41.
- 3. Feikin DR, et al. Am J Public Health 2000;90(2):223-9.

S. pneumoniae Serotypes and Risk of Cardiac Events

MACE, major adverse cardiac events

Africano HF, Serrano-Mayorga CC, Ramirez-Valbuena PC, Bustos IG, Bastidas A, Vargas HA, Gómez S, Rodriguez A, Orihuela CJ, Reyes LF. Major Adverse Cardiovascular Events During Invasive Pneumococcal Disease are Serotype Dependent. Clin Infect Dis. 2020 Sep 22:ciaa1427.

AMBULATORY PATIENTS	HOSPITALIZED (NON-ICU)	SEVERE (ICU)
S. pneumoniae	S. pneumoniae	S. pneumoniae
M. pneumoniae	M. pneumoniae	H. influenzae
H. influenzae	C. pneumoniae	<i>Legionella</i> spp.
C. pneumoniae	H. influenzae	Gram-negative bacilli
Respiratory viruses*	<i>Legionella</i> spp.	S. aureus
	Aspiration	Viral:
	Respiratory viruses*	Influenza COVID-19

ICU = Intensive care unit

*Influenza A and B, adenovirus, respiratory syncytial virus, and parainfluenza

ICU, intensive care unit

Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007 Mar 1;44 Suppl 2:S27-S72.

Antimicrobial Resistance - Status

Urgent Threats

These germs are public health threats that require urgent and aggressive action

Carbapenem-resistant Acinetobacter Candida auris Clostridioides difficile Carbapenem-resistant Enterobacteriaceae Drug-resistant Neisseria gonorrhoeae

Concerning Threats

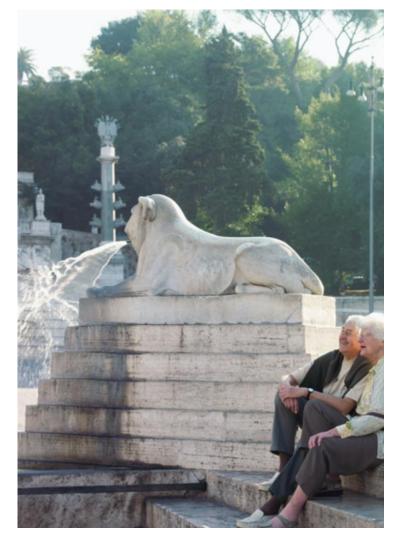
These germs are public health threats that require careful monitoring and prevention action Γ

Erythromycin-resistant group A *Streptococcus* Clindamycin-resistant group B *Streptococcus*

Serious Threats

These germs are public health threats that require prompt and sustained action:

Drug-resistant *Campylobacter* Drug-resistant *Candida* ESBL-producing Enterobacteriaceae Vancomycin-resistant *Enterococci* Multidrug-resistant *Pseudomonas aeruginosa* Drug-resistant nontyphoidal *Salmonella* Drug-resistant *Salmonella* serotype Typhi Drug-resistant *Shigella* Methicillin-resistant *Staphylococcus aureus* Drug-resistant *Streptococcus pneumoniae* Drug-resistant Tuberculosis

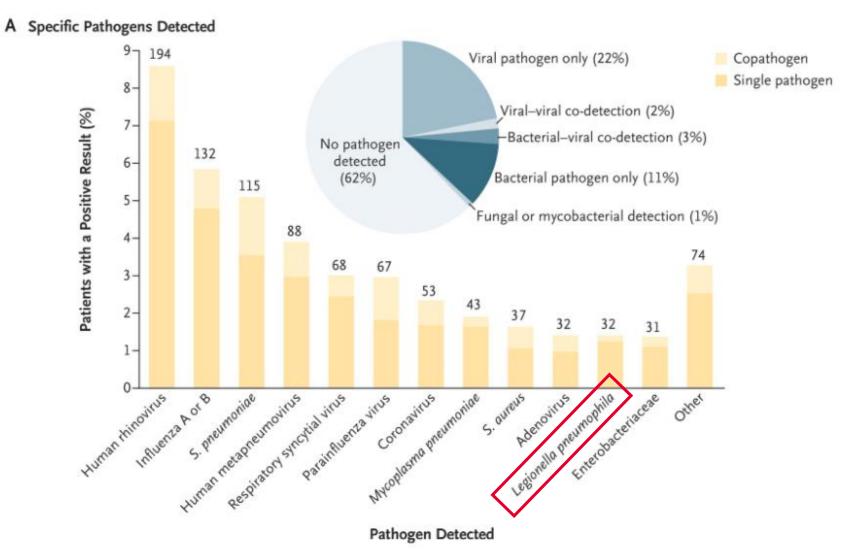

Watch List

Azole-resistant *Aspergillus fumigatus* Drug-resistant *Mycoplasma genitalium* Drug-resistant *Bordetella pertussis*

CDC. Antibiotic Resistance Threats In The United States 2019. Revised December 2019. <u>https://www.Cdc.Gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.Pdf</u>. Accessed January 18, 2021

Legionella

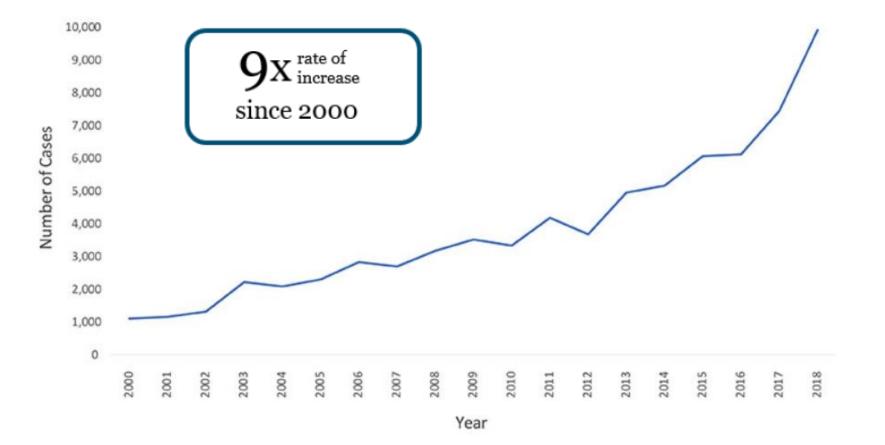
- Leading cause of waterborne disease outbreaks¹
- The deadliest pneumonia up to 25% fatality rate²
- Disease incidence continues to rise, and likely underdiagnosed³ impact of shut-downs/reopenings?
- Outbreaks can lead to costly legal action with lasting negative impact on facility reputations⁴
- Initial symptom presentation similar to COVID⁵
- Risk factors^{6:}
 - Age \geq 50 years
 - Smoking
 - Underlying illness
 - Recent travel
 - Exposure to water sources


Craun GF, et al. Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. *Clinical Microbiology Reviews*. 2010;23(3): 507–528.
 Soda EA, et al. Vital Signs: Health Care-Associated Legionnaires' Disease Surveillance Data From 20 States and a Large Metropolitan Area-United States, 2015. *Am J Transplant*. 2017;17(8):2215-2220.
 CDC, Nationally Notifiable Diseases Surveillance System, https://www.cdc.gov/legionella/images/national-incidence.jpg

4. Puri S, et al. Clinical Presentation of Community-Acquired Legionella Pneumonia Identified by Universal Testing in an Endemic Area. Int J Environ Res Public Health. 2020;17(2):533.

5. Dey R, Ashbolt NJ. Legionella Infection during and after the COVID-19 Pandemic. ACS ES&T Water. 2020; acsestwater. 0c00151. Published 2020 Sep 23.

6. Legionnaires Disease Specifics. Centers for Disease Control and Prevention. https://www.cdc.gov/legionella/clinicians/disease-specifics.html. Published April 30, 2018. Accessed January 14, 2021.


Etiology of Community-Acquired Pneumonia

Jain S, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415-427.

Legionnaire's Disease: Likely Underdiagnosed

Legionnaires' disease is on the rise in the United States 2000-2018

CDC, Nationally Notifiable Diseases Surveillance System, https://www.cdc.gov/legionella/images/national-incidence.jpg

Diagnosis and Treatment of Adults with CAP Official Clinical Practice Guidelines from ATS/IDSA

AMERICAN THORACIC SOCIETY DOCUMENTS

Diagnosis and Treatment of Adults with Community-acquired Pneumonia

An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America

a Joshua P. Metlay*, Grant W. Waterer*, Ann C. Long, Antonio Anzueto, Jan Brozek, Kristina Crothers, Laura A. Cooley, Nathan C. Dean, Michael J. Fine, Scott A. Flanders, Marie R. Griffin, Mark L. Metersky, Daniel M. Musher, Marcos I. Restrepo, and Cynthia G. Whitney; on behalf of the American Thoracic Society and Infectious Diseases Society of America

THIS OFFICIAL CLINCAL PRACTICE GUIDELINE WAS APPROVED BY THE AMERICAN THORACIC SOCIETY MAY 2019 AND THE INFECTIOUS DISEASES SOCIETY OF AMERICA August 2019

Background: This document provides evidence-based clinical practice guidelines on the management of adult patients with community-acquired pneumonia.

management decisions. Although some recommendations remain unchanged from the 2007 guideline, the availability of results from new therapeutic trials and epidemiological investigations led to revised recommendations for empiric treatment strategies and additional management decisions.

Methods: A multidisciplinary panel conducted pragmatic systematic reviews of the relevant research and applied Grading of Recommendations, Assessment, Development, and Evaluation methodology for clinical recommendations.

for adult patients with community-acquired pneumonia. Results: The panel addressed 16 specific areas for recommendations spanning questions of diagnostic testing, determination of site of care, selection of initial empiric antibiotic therapy, and subsequent management

recommendations on selected diagnostic and treatment strategies Keywords: community-acquired pneumonia; pneumonia; patient

Conclusions: The panel formulated and provided the rationale for

Contents Overview Introduction Methods Recommendations Question 1: In Adults with CAP, Question 2: In Adults with CAP, Should Gram Stain and Culture Should Blood Cultures Be of Lower Respiratory Secretions Obtained at the Time of Diagnosis? Be Obtained at the Time of Question 3: In Adults with CAP. Diagnosis? Should Legionella and

*Co-first authors.

Endorsed by the Society of Infectious Disease Pharmacists July 2019.

ORCID IDs: 0000-0003-2259-6282 (J.P.M.); 0000-0002-7222-8018 (G.W.W.); 0000-0002-7007-588X (A.A.); 0000-0002-3122-0773 (J.B.); 0000-0001-9702-0371 (K.C.); 0000-0002-5127-3442 (L.A.C.); 0000-0002-1996-0533 (N.C.D.); 0000-0003-3470-9846 (M.J.F.); 0000-0002-8634-4909 (S.A.F.); 0000-0001-7114-7614 (M.R.G.); 0000-0003-1968-1400 (M.L.M.); 0000-0002-7571-066X (D.M.M.); 0000-0001-9107-3405 (M.I.R.); 0000-0002-1056-3216 (C.G.W.)

Supported by the American Thoracic Society and Infectious Diseases Society of America.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the U.S. CDC.

An Executive Summary of this document is available at http://www.atsjournals.org/doi/suppl/10.1164/rccm.201908-1581ST.

3You may print one copy of this document at no charge. However, if you require more than one copy, you must place a reprint order. Domestic reprint orders: amv.schriver@sheridan.com; international reprint orders; louisa.mott@springer.com.

This article has an online supplement, which is accessible from this issue's table of contents at www.atsjournals.org.

Am J Respir Crit Care Med Vol 200, lss 7, pp e45-e67, Oct 1, 2019 Copyright @ 2019 by the American Thoracic Society DOI: 10.1164/rccm.201908-1581ST Internet address: www.atsjournals.org

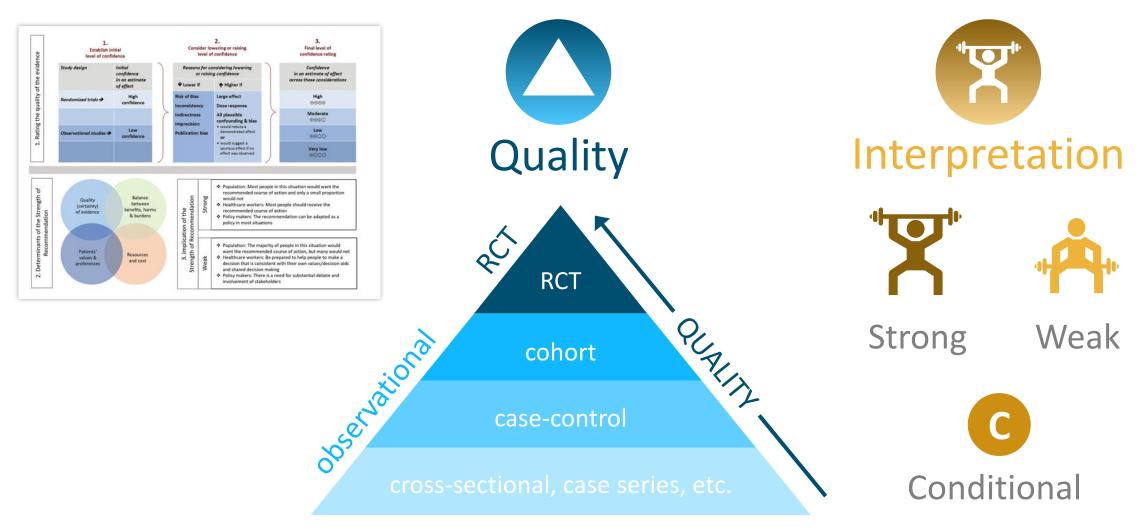
American Thoracic Society Documents

16 Questions

Diagnosis

Treatment

Other therapies


Duration Therapy

Follow up

Metlay JP, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45-e67.

e45

Evaluating Recommendations

Shane AL, Mody RK, Crump JA, et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. *Clin Infect Dis*. 2017;65(12):1963-1973. Metlay JP, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. *Am J Respir Crit Care Med*. 2019;200(7):e45-e67.

Recommendations for Specific Management Questions: Initial Diagnostic Evaluation

Question 1

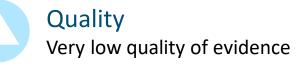
In adults with CAP, should Gram stain and culture of lower respiratory secretions **be obtained** at the time of diagnosis?

Recommendation

In the setting of **severe CAP**, especially if they are intubated

Or, are being **empirically treated for MRSA or** *P. aeruginosa*

Interpretation Strong



Quality Very low quality of evidence

Or, were previously infected with MRSA or P. aeruginosa, especially those with prior respiratory tract infection

Or, were hospitalized and received parenteral antibiotics, whether during the hospitalization event or not, in the last 90 days

Metlay JP, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45-e67.

Recommendations for Specific Management Questions: Initial Diagnostic Evaluation

Question 2

In adults with CAP, should **blood cultures be obtained** at the time of diagnosis?

Recommendations

Obtain pretreatment blood cultures in the setting of severe CAP

Or, if being empirically treated for MRSA or *P. aeruginosa*

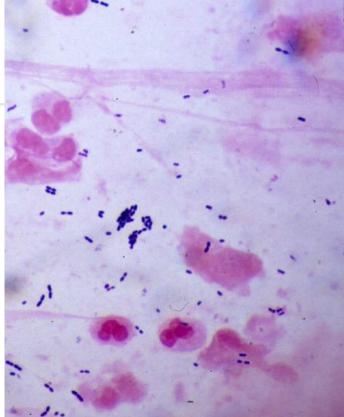
Interpretation Strong

Quality Very low quality of evidence

Or, were previously infected with MRSA or P. aeruginosa, especially those with prior respiratory tract infection

Or, were hospitalized and received parenteral antibiotics, whether during the hospitalization event or not, in the last 90 days

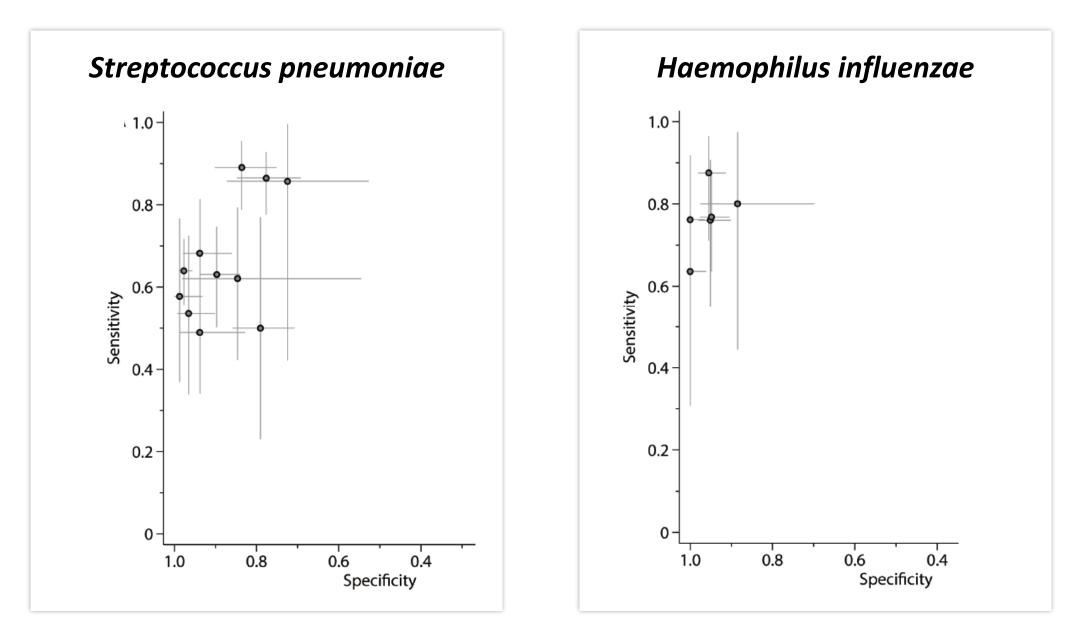
Metlay JP, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45-e67.


Clinical Infectious Diseases

MAJOR ARTICLE

Sputum Gram Stain for Bacterial Pathogen Diagnosis in Community-acquired Pneumonia: A Systematic Review and Bayesian Meta-analysis of Diagnostic Accuracy and Yield

Hiroaki Ogawa,¹ Georgios D. Kitsios,² Mitsunaga Iwata,¹ and Teruhiko Terasawa,^{1,©}



Ogawa H, et al. Sputum Gram Stain for Bacterial Pathogen Diagnosis in Community-acquired Pneumonia: A Systematic Review and Bayesian Metaanalysis of Diagnostic Accuracy and Yield. Clin Infect Dis. 2020 Jul 27;71(3):499-513.

Poll Question #2

The following UAT are performed in-house:

- a. S. pneumoniae
- b. L. pneumophila
- c. Both
- d. Neither
- e. n/a

Ogawa H, et al. Sputum Gram Stain for Bacterial Pathogen Diagnosis in Community-acquired Pneumonia: A Systematic Review and Bayesian Meta-analysis of Diagnostic Accuracy and Yield. Clin Infect Dis. 2020 Jul 27;71(3):499-513.

Recommendations for Specific Management Questions: Initial Diagnostic Evaluation

Question 3

In adults with CAP, should *Legionella* and pneumococcal urinary antigen testing be performed at the time of diagnosis?

Recommendation

Legionella and S. pneumoniae antigen testing

- In adults with severe CAP
 - (Legionella) also collect lower respiratory tract secretions for culture or NAAT
- Where indicated by epidemiological factors (Legionella)
 - i.e., known outbreaks or recent travel

Quality Low quality of evidence

Metlay JP, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45-e67.

UAT Guideline Recommendation Based On Observed Mortality Reduction in Large Observational Studies Costantini, et al. 2016

	In-hospital mortality N = 561		$\frac{30 \text{-day mortality}}{N = 495}$		Length of hospital stay $\overline{N = 561}$		Duration of antibiotic therapy $ \frac{N = 505}{N} $	
	OR	95 % CI	OR	95 % CI	MD	95 % CI	MD	95 % CI
Socio-demographic characteristics and other poter	ntial cont	founders						
Age in years (continuous)	1.081	1.049, 1.114	1.105	1.068, 1.143	0.052	0.016, 0.089	-0.003	-0.038, 0.033
Male gender (vs. female gender)	0.803	0.454, 1.419	0.628	0.348, 1.133	0.850	-0.424, 2.124	0.411	-0.792, 1.615
Admission from nursing home (vs. from own home)	1.118	0.544,2.300	1.409	0.648, 3.063	-3.222	-5.232, -1.213	-1.770	-3.619, 0.079
Five or more comorbidities (vs. less than five)	1.601	0.827, 3.102	1.243	0.627, 2.464	1.150	-0.621, 2.921	1.421	-0.233, 3.075
ATS criteria for CAP severity (continuous)	1.743	1.383, 2.196	1.868	1.462, 2.385	-0.287	-0.903, 0.329	-1.111	-1.694, -0.527
Admission in 2012 (vs. admission in 2015)	1.081	0.491, 2.377	0.863	0.387, 1.923	1.297	-0.723, 3.318	0.659	-1.224, 2.541
Stay in a respiratory ward (vs. stay in a non- respiratory ward)	0.847	0.351, 2.042	0.750	0.304, 1.851	4.225	2.152, 6.299	4.363	2.377, 6.349
Mechanical ventilation	0.968	0.289, 3.243	1.102	0.340, 3.575	4.638	1.688, 7.587	5.017	2.115, 7.919
Adherence to diagnostic procedures								
Blood culture	0.677	0.377, 1.213	0.600	0.328, 1.097	2.631	1.259, 4.003	2.728	1.417, 4.039
Urinary Antigen tests	0.427	0.215, 0.850	0.341	0.170, 0.685	0.033	-1.407, 1.473	-0.164	-1.535, 1.207

57% lower odds of in-hospital mortality and 66% lower odds of 30-day mortality compared to patients not tested

(Adjusted for baseline demographic/ clinical differences)

Costantini E, Allara E, Patrucco F, Faggiano F, Hamid F, Balbo PE. Adherence to guidelines for hospitalized community-acquired pneumonia over time and its impact on health outcomes and mortality. Intern Emerg Med. 2016;11(7):929-940.

UAT Guideline Recommendation Based On Observed Mortality Reduction in Large Observational Studies _{Uematsu, et al. 2014}

	Severity class							
	Very severe	•••••	Severe		Moderate	•••••	Mild	
Death ^a /total (%)	2075/7935 (26.1) OR (95% CI)	Р	977/8224 (11.9) OR (95% CI)	Р	1214/36 186 (3.4) OR (95% CI)) P	41/12 213 (0.3) OR (95% CI)	Р
Sputum tests	0.93 (0.82–1.05)	0.24	1.22 (1.05–1.41)	0.009	1.11 (0.98–1.26)	0.11	1.00 (0.50-2.00)	0.9
Blood cultures	0.81 (0.70-0.93)	0.004	0.71 (0.60-0.85)	< 0.001	0.79 (0.68–0.93)	0.003	1.67 (0.79-3.53)	0.1
Urine antigen tests	0.75 (0.64-0.87)	< 0.001	0.75 (0.63–0.89)	0.001	0.80 (0.69-0.94)	0.005	0.39 (0.16-0.99)	0.0
Cumulative no. perf	formed							
0	Reference		Reference		Reference		Reference	
1	0.97 (0.85-1.12)	0.69	1.03 (0.87-1.21)	0.74	0.81 (0.70-0.93)	0.003	1.03 (0.50-2.11)	0.9
2	0.74 (0.63–0.86)	< 0.001	0.78 (0.64–0.94)	0.010	0.78 (0.66–0.92)	0.004	0.50 (0.17–1.47)	0.2
3	0.51 (0.40-0.64)	< 0.001	0.70 (0.54–0.91)	0.008	0.83 (0.66–1.04)	0.11	1.08 (0.36–3.26)	0.8

25% reduced odds of 30-day mortality

^aIn-hospital deaths within 30 days of admission.

Uematsu H, Hashimoto H, Iwamoto T, Horiguchi H, Yasunaga H. Impact of guideline-concordant microbiological testing on outcomes of pneumonia. Int J Qual Health Care. 2014;26(1):100-107.

Testing Warranted in Endemic Populations

- Identifies cases that would otherwise remain undetected
- Facilitates targeted antibiotic therapy
- Provides surveillance for potential outbreaks

"Routine *Legionella* testing affords confidence that cases were not missed...and infection prevention protocols remained effective."

International Journal of Environmental Research and Public Health

Article

Clinical Presentation of Community-Acquired Legionella Pneumonia Identified by Universal Testing in an Endemic Area

Shruti Puri¹, Monique Boudreaux-Kelly², Jon D. Walker², Cornelius J. Clancy^{2,3} and Brooke K. Decker ^{2,3,*}

- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA; puri@musc.edu
- Statcore, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; Monique.Kelly@va.gov (M.B.-K.); Jon.Walker4@va.gov (J.D.W.); cjc76@pitt.edu (C.J.C.)
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: brooke.decker@va.gov

Received: 5 December 2019; Accepted: 12 January 2020; Published: 15 January 2020

Abstract: The rapid identification of Legionella pneumonia is essential to optimize patient treatment and outcomes, and to identify potential public health risks. Previous studies have identified clinical factors which are more common in Legionella than non-Legionella pneumonia, and scores have been developed to assist in diagnosing cases. Since a Legionella pneumonia outbreak at VA Pittsburgh in 2012, nearly all patients with pneumonia have been tested for *Legionella*. The purpose of this study was to evaluate distinguishing characteristics between Legionella and non-Legionella pneumonia with the application of universal testing for Legionella in all cases of community-acquired pneumonia. We performed a retrospective case-control study matching Legionella and non-Legionella pneumonia cases occurring in the same month. Between January 2013 and February 2016, 17 Legionella and 54 non-Legionella cases were identified and reviewed. No tested characteristics were significantly associated with Legionella cases after Bonferroni correction. Outcomes of Legionella and non-Legionella pneumonia were comparable. Therefore, in veterans who underwent routine Legionella testing in an endemic area, factors typically associated with Legionella pneumonia were non-discriminatory.

Puri S, Boudreaux-Kelly M, Walker JD, Clancy CJ, Decker BK. Clinical Presentation of Community-Acquired Legionella Pneumonia Identified by Universal Testing in an Endemic Area. Int J Environ Res Public Health. 2020;17(2):533. Published 2020 Jan 15. doi:10.3390/ijerph17020533

Clinical Infectious Diseases

MAJOR ARTICLE

Pneumococcal and *Legionella* Urinary Antigen Tests in Community-acquired Pneumonia: Prospective Evaluation of Indications for Testing

Shawna Bellew,¹ Carlos G. Grijalva,¹ Derek J. Williams,¹ Evan J. Anderson,² Richard G. Wunderink,³ Yuwei Zhu,¹ Grant W. Waterer,⁴ Anna M. Bramley,⁵ Seema Jain,⁵ Kathryn M. Edwards,¹ and Wesley H. Self¹

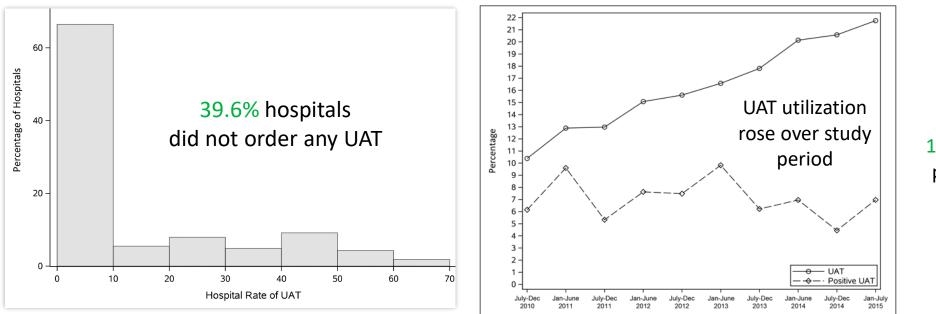
A	SP						
	IDSA/ATS indicat						
	Positive						
SP UAT positive	49 (4.1%)	32 (4.2%)	81				
SP UAT negative	1135 (95.9%)	725 (95.8%)	1860				
	1184	757	1941				

В	LP		
	IDSA/ATS indicat	tions for LP UAT	
	Positive	.	
LP UAT positive	20 (1.6%)	12 (1.8%)	32
LP UAT negative	1238 (98.4%)	671 (98.2%)	1909
	1258	683	1941

Bellew S, Grijalva CG, Williams DJ, Anderson EJ, Wunderink RG, Zhu Y, Waterer GW, Bramley AM, Jain S, Edwards KM, Self WH. Pneumococcal and Legionella Urinary Antigen Tests in Community-acquired Pneumonia: Prospective Evaluation of Indications for Testing. Clin Infect Dis. 2019 May 30;68(12):2026-2033.

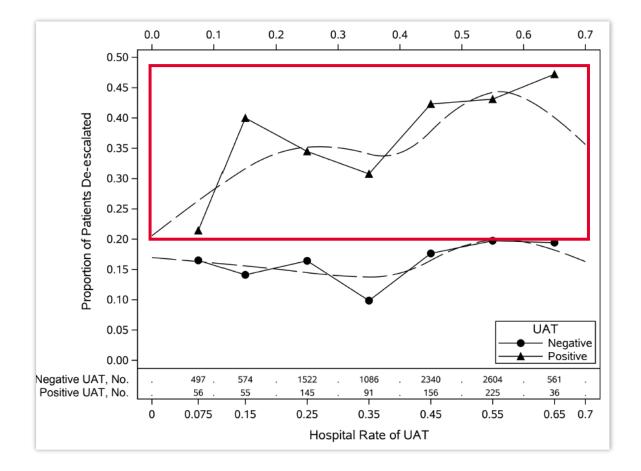
Multivariable Models for Predicting Positive *Streptococcus pneumoniae* and *Legionella pneumophila* Urinary Antigen Tests

	Multivariable OR (95% CI)
<i>Streptococcus pneumoniae</i> (n = 81)	
Male sex	0.69 (0.43-1.09)
Age ≥65	1.04 (0.61–1.77)
Failure of outpatient antibiotics	0.67 (0.36–1.26)
Fever (>38°C)	1.50 (0.93–2.42)
Hyponatremia	1.81 (0.96–3.41)
ICU admission	1.29 (0.75–2.24)
Pneumonia Severity Index risk class ≥IV	1.46 (0.84–2.55)
Empiric broad spectrum antibiotics	1.16 (0.70–1.94)
<i>Legionella pneumophila</i> (n = 32)	
Recent travel	2.18 (0.99–4.76)
Fever (>38°C)	3.21 (1.56–6.60)
Hyponatremia	7.44 (3.5–15.67)
Diarrhea	2.88 (1.39–5.95)


Bellew S, Grijalva CG, Williams DJ, Anderson EJ, Wunderink RG, Zhu Y, Waterer GW, Bramley AM, Jain S, Edwards KM, Self WH. Pneumococcal and Legionella Urinary Antigen Tests in Community-acquired Pneumonia: Prospective Evaluation of Indications for Testing. Clin Infect Dis. 2019 May 30;68(12):2026-2033.

Clinical Infectious Diseases

MAJOR ARTICLE


Pneumococcal Urinary Antigen Testing in United States Hospitals: A Missed Opportunity for Antimicrobial Stewardship

16.2% UAT in pneumonia population (n=159,894)

Schimmel JJ, Haessler S, Imrey P, Lindenauer PK, Richter SS, Yu PC, Rothberg MB. Pneumococcal Urinary Antigen Testing in United States Hospitals: A Missed Opportunity for Antimicrobial Stewardship. Clin Infect Dis. 2020 Sep 12;71(6):1427-1434.

Rate of De-escalation Following UAT Positivity Tended To Increase With Increasing Hospital Use

Hospital UAT use was strongly correlated with de-escalation following a positive test

Schimmel JJ, Haessler S, Imrey P, Lindenauer PK, Richter SS, Yu PC, Rothberg MB. Pneumococcal Urinary Antigen Testing in United States Hospitals: A Missed Opportunity for Antimicrobial Stewardship. Clin Infect Dis. 2020 Sep 12;71(6):1427-1434.

What are the clinical scenarios where UAT can be useful?

Hospitalized patients with CAP

COVID + patients – required hospitalization due to acute respiratory failure

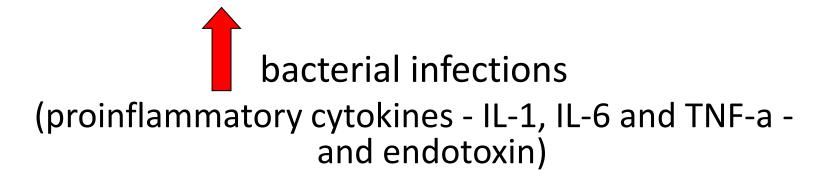
Hospitalized patient that you suspect a nosocomial pneumonia

Recommendations for Specific Management Questions: Initial Diagnostic Evaluation

Question 5

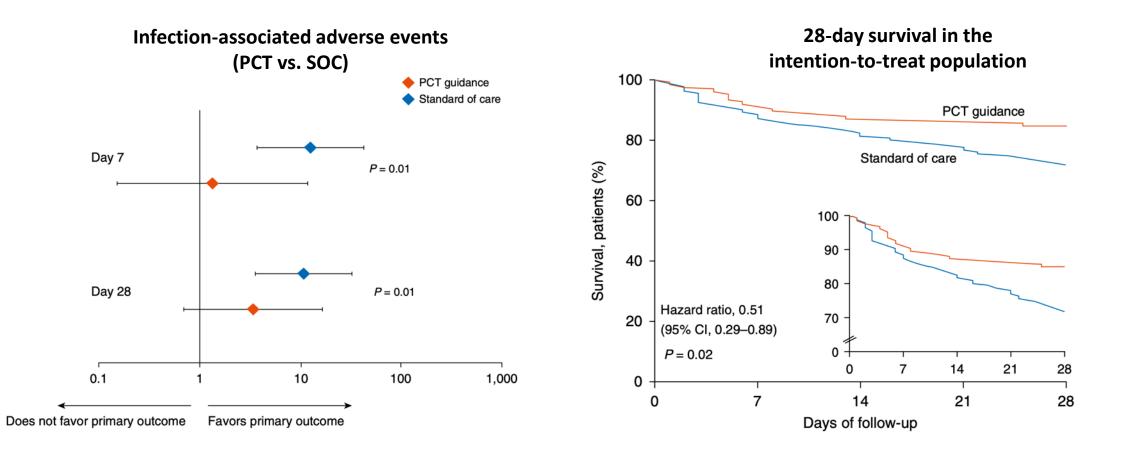
In adults with CAP, should serum procalcitonin plus clinical judgement versus clinical judgment alone be used to withhold initiation of antibiotic treatment?

Recommendation


Serum procalcitonin should **not be used to withhold initiation of empiric antibiotic therapy** in adults with CAP.

Metlay JP, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200(7):e45-e67.

Procalcitonin Differentiates between Bacterial and Viral Infections



inflammation-mediated expression of the CALC I gene

Authors	Study name	Research question	Setting	n=	Mortality Control vs PCT group	AB exposure Control vs PCT	Relative AB reduction
Christ-Crain et al,	ProRESP	Reduction of antibiotic prescription for LRTI in the ED?	ED, single center	243	4/119 (3.4%) vs 4/124 (3.2%)	10.7 vs 4.8*	55.1%
Christ-Crain et al,	ProCAP	Reduction of antibiotic exposure in CAP in ED and hospital?	ED and hospital, single center	302	20/151 (13.2%) vs 18/151 (11.9%)	12.9 vs 5.7*	55.8%
Stolz et al,	ProCOLD	Reduction of antibiotic exposure in COPD exacerbation over 6 month?		208	9/106 (8.5%) vs 5/102 (4.9%)	7.0 vs 3.7*	47.1%
Briel et al,	PARTI	Safety & reduction of antibiotic exposure in upper and lower RTI?	Primary Care, multicenter	458	1/232 (0.4%) vs 0/226 (0%)	6.8 vs 1.5*	77.9%
Nobre et al,	"ProSEP"	Reduction of antibiotic exposure in septis in the ICU ?	n ICU , single center	79	8/39 (20.5%) vs 8/40 (20%)	9.5 vs 6**	36.8%
Schuetz et al,	ProHOSP	Safety & feasability in LRTI in a multicenter setting?	ED and hospital, multicenter	1359	33/671 (4.9%) vs 34/688 (4.9%)	8.7 vs 5.7*	34.5%
Stolz et al,	ProVAP	Reduction of antibiotic exposure in VAP in different ICUs ?	n ICU, multicenter	101	12/50 (24%) vs 8/51 (15.7%)	9.5 vs 13***	26.9%
Kristoffersen et al,	1-PCT	Reduction of antibiotic exposure for LRTI in Denmark?	ED and hospital, single center	210	1/107 (0.9%) vs 2/103 (1.9%)	6.8 vs 5.1*	25.0%
Hochreiter et al,	ProSICU	Guiding antibiotic therapy with PCT in a surgical ICU?	Surgical ICU, single center	110	14/53 (26.4%) vs 15/57 (26.3%)	7.9 vs 5.9*	25.3%
Bouadma et al,	ProRATA	Reduction of antibiotic exposure for sepsis in different french ICUs	ICU , ?multicenter	621	64/314 (20.4%) vs 65/307 (21.2%)	11.6 vs 14.3***	18.9%
Burckhardt et all	"PARTI Germany"	Safety & reduction of only initial PCT measurement in primary care?	Primary Care, multicenter	550	0/275 (0%) vs 0/275 (0%)	36.7% vs 21.5%****	42.0%
	Total		(4241	166/2117 (7.8%) vs 159/2124 (7.5%))	

Schuetz P, Wirz Y, Sager R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis. 2018 Jan;18(1):95-107. doi: 10.1016/S1473-3099(17)30592-3. Epub 2017 Oct 13.

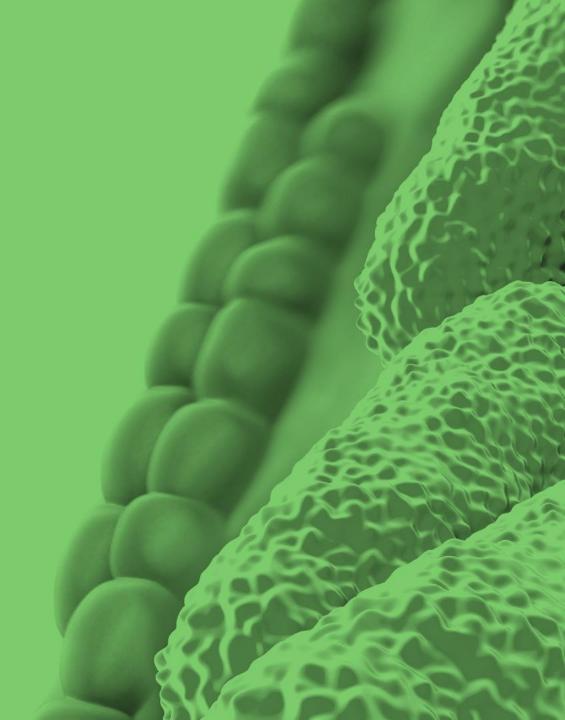
PCT-guidance treatment compared to standard-of-care after 180 days

Kyriazopoulou E, et al. Procalcitonin to Reduce Long-Term Infection-associated Adverse Events in Sepsis. A Randomized Trial. Am J Respir Crit Care Med. 2021 Jan 15;203(2):202-210.

What are the clinical scenarios where PCT levels can be useful?

Recognizing response to and shortening duration of antibiotic therapy

Determining the need for antibiotics in patients with LRTI (i.e., AECOPD)


Determining severity of infection (e.g. localized versus systemic)

Differentiating between septic and other forms of shock

Distinguishing viral from bacterial infection in febrile patients

CAP Test Methods:

S. pneumoniae Legionella

LEGIONELLA

METHODOLOGY	COMPONENT DETECTED	SAMPLE TYPE	SENSITIVITY	SPECIFICITY	TURNAROUND TIME
Culture	organism	sputum	Gold Standard [*]	Gold Standard [*]	4 - 10 days
UAT ¹	antigen	urine	95%	95%	15 minutes
DFA ²	organism	sputum	33% - 70%	>95%	40 - 60 minutes
Serology/IFA ²	antibody	serum	40% - 60%	>95%	60 - 90 minutes

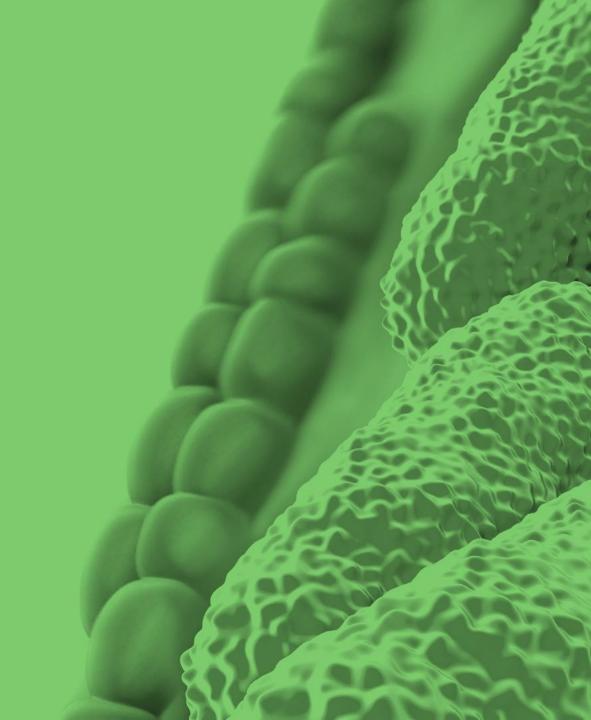
STREPTOCOCCUS PNEUMONIAE

METHODOLOGY	COMPONENT DETECTED	SAMPLE TYPE	SENSITIVITY	SPECIFICITY	TURNAROUND TIME
UAT ³	antigen	urine	86%**	94%**	15 minutes
Blood Culture	organism	blood	10% - 30% ⁴	N/A	24 - 48 hours
Sputum Culture	organism	sputum	29% - 94% ⁵	66% ⁶ - 94% ⁷	24 - 48 hours
Sputum Gram Stain ⁸	organism	sputum	15% - 100%	11% - 100%	15 minutes

* Sensitivity and specificity data for methodologies listed were obtained through comparison to clinical diagnosis including culture.

** Sensitivity and specificity data are retrospective for urine only.

- 1. BinaxNOW[™] Legionella Urinary Antigen Card Package Insert.
- 2. Stout JE and Yu VL. Legionellosis, NEJM, 1997; 337:682-687.
- 3. Schrag SJ, et al. Resistant Pneumococcal Infections, WHO/CDS/CSR/DRS/2001.6.
- 4. BinaxNOW[™] S. pneumoniae Urinary Antigen Card Package Insert.
- 5. Musher D, et al. Diagnostic Value of Microscopic Examination of Gram-Stained Sputum and Sputum Cultures Inpatients with Bacteremic Pneumococcal Pneumonia; CID: 2004:39.
- 6. Stralin K, et al. Etiologic Diagnosis of Adult Bacterial Pneumonia by Culture and PCR Applied to Respiratory Tract Samples, J Clin Micro, Feb. 2006, 643-645.
- 7. Garcia-Vazquez E, et al. Assessment of the Usefulness of Sputum Culture for Diagnosis of Community-Acquired Pneumonia Using the PORT Predictive Scoring System, Arch Inter Med/Vol. 164, Sept. 13, 2004, 1807-1811.
- 8. Reed, W, et al. Sputum Gram's Stain in Community Acquired Pneumococcal Pneumonia A Meta-analysis; West J. Med 1996; 165:197-204.


UAT for *S. pneumoniae* and *Legionella*

Guideline-concordant testing¹ Non-invasive, ease of urine sample collection³ No instrument required Easy to use^{2,3} Rapid results^{2,3} Low cost per test/Inexpensive^{2,3} Guide for antibiotic de-escalation^{2,3}

UAT may provide cost-effective off-instrument testing option to avoid disrupting molecular workflows and higher technical demands

- 1. Metlay JP, et al. Am J Respir Crit Care Med. 2019;200(7):e45-e67.
- 2. Schimmel JJ, et al. Clin Infect Dis. 2020 Sep 12;71(6):1427-1434.
- 3. West, et al. Pneumococcal urinary antigen test use in diagnosis and treatment of pneumonia in seven Utah hospitals. Pneumococcal urinary antigen test use in diagnosis and treatment of pneumonia in seven Utah hospitals. ERJ Open Res 2016; 2: 00011-2016.

Summary

CAP Dx - Take Home Messages

- CAP is changing clinical diagnosis is pivotal for patient's management
- ✓ UAT helps identify two important CAP pathogens associated with high mortality
 - Legionella, of increasing prevalence and poses new risks with building re-openings
 - \checkmark S. pneumoniae, the leading cause of CAP
- ✓ Procalcitonin is important diagnosis tool for the diagnosis and management of CAP
- ✓ During COVID 19, CAP diagnosis and management should be managed according to the ATS/IDSA CAP Guidelines

"Problems are not stop signs, they are guidelines"

- Robert H. Schuller

THANK YOU

© 2021 Abbott. All rights reserved. All trademarks referenced are trademarks of either the Abbott group of companies or their respective owners. Any photos displayed are for illustrative purposes only. 120007767-01 01/21