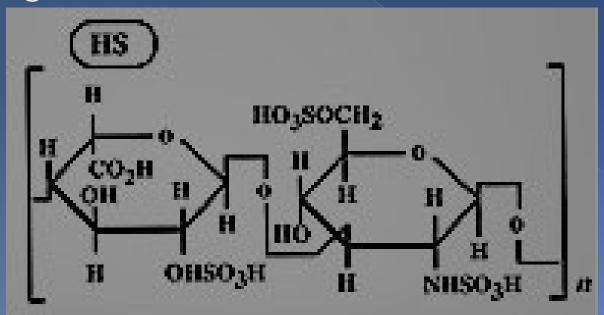
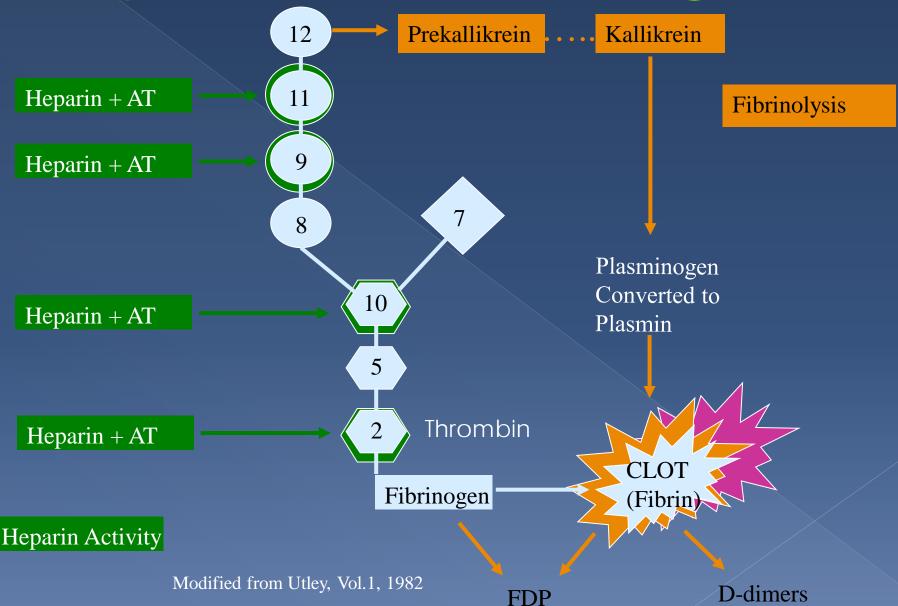
The 123's of ACT

Marcia L. Zucker, Ph.D. ZIVD LLC

Objectives


- Explain why ACTs from different systems are not the same
- Develop a plan for switching from one ACT system to another
- Describe why ACT and a PTT are not interchangeable

What is an ACT?


- Modified Lee-White clotting time
 - Add blood to glass tube, shake
 - Place in heat block
 - Visual clot detection
- First described in 1966 by Hattersley
 - Activated Clotting Time
 - Add blood to glass tube with dirt, shake
 - Diatomaceous earth activator
 - Place in heat block
 - Visual clot detection
 - Proposed for both screening for coagulation defects and for heparin monitoring

What is Heparin?

- Glucopolysaccharide
- MW range: 6,000 25,000 daltons
- Only ~1/3 molecules active
 - Must contain specific sequence of glucosaccharides to function

Heparin Effects on Coagulation

Why Monitor Heparin?

- Potency varies by manufacturer
 - > Potency varies by lot
- Dose response varies by patient
 - > Half life ranges from 60 120 minutes
 - Non-specific binding
- Functions by accelerating action of antithrombin
 - Antithrombin level critical for appropriate response

Why Use an ACT?

Monitoring hemostasis for heparin anticoagulated patients

Why do we use an ACT?

- Point of Care
 - Immediate turn around
 - Rapidly adjust anticoagulant dosing as needed
 - Heparin half life varies by patient
 - Dose required varies by patient
 - Potency varies by lot
 - Direct thrombin inhibitors very short half life
 - Require immediate intervention
 - No antidote available

Where is an ACT Used?

- Cardiac surgery
- Percutaneous coronary intervention (PCI)
- Interventional cardiology
- ECMO
- Critical care
- Interventional radiology
- Electrophysiology
- Vascular surgery
- etc.

Cardiac Surgery

- Industry Standard Since 1970s
- Recommended as 1° method in AmSECT guidelines
- ACT improves outcome in CPB, PCI
 - > AACC NACB LMPG for POCT
 - Strongly recommend ACT monitoring of heparin anticoagulation and neutralization in cardiac surgery. (Class A, Level I)
 - Insufficient evidence to recommend specific target times for use during cardiovascular Surgery. (Class I - conflicting evidence across clinical trials).
- Easy to run

Cardiac Surgery

- Disadvantages
 - Each system yields different numbers
 - Most sensitive to hypothermia and hemodilution
 - > Little or no correlation to heparin level
 - especially true for pediatric patients
- "Standard" target time = 480 seconds
 - Developed with manual ACT
 - Suggested due to high variability

Catheterization Laboratory

- Diagnostic
 - Catheterization
 - locate and map vessel blockage(s)
 - determine need for interventional procedures
 - > Electrophysiology
- Interventional
 - > Balloon angioplasty
 - > Atherectomy (roto-rooter)
 - Stent placement

Dosing & Target Times

- Angioplasty, Atherectomy, Stent placement
 - > 10,000 unit bolus dose or 2 2.5 mg/kg
 - target ACT 300 350 seconds
 - Target time be reduced if ReoPro Used
 - ReoPro is one of 3 "GPIIb/IIIa" Inhibitors
- Catheterization and Electrophysiology
 - Same dosing and targets for vascular surgery
 - > 2500 5000 unit bolus dose
 - frequently not monitored
 - if monitored Targets ~ 200 seconds OR twice baseline

ECMO

- ExtraCorporeal Membrane Oxygenation
 - Very small window of safety
 - > NACB Guidelines:
 - Strongly recommend ACT monitoring to control heparin anticoagulation during ECMO. (Class A -Level III)
 - Target times for ECMO based on the ACT system. (Class B - Level III)
 - > Target often 180 200 seconds
 - Based on Hemochron P214/215 tubes

Critical Care

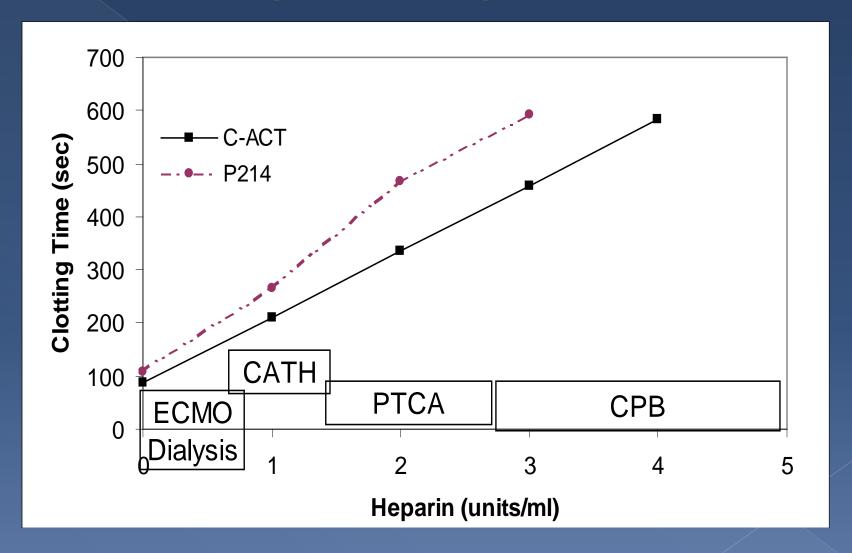
- Determine when to pull the femoral sheath
 - > Premature sheath pull can lead to bleeding.
 - Delayed removal can increase time in CCU.
 - Target set at each site.
 - ACT targets range from 150 220 seconds
 - aPTT targets range from 40 70 seconds
- Monitor heparin therapy
 - Target times determined by each facility
 - ACT or aPTT

ACT versus aPTT

- ACT
 - Activated clotting time
 - > POC Only
 - Low, moderate or high dose heparin
 - System dependent

- aPTT
 - Activated partial thromboplastin time
 - Laboratory or POC
 - Low dose heparin only
 - System dependent upper limit

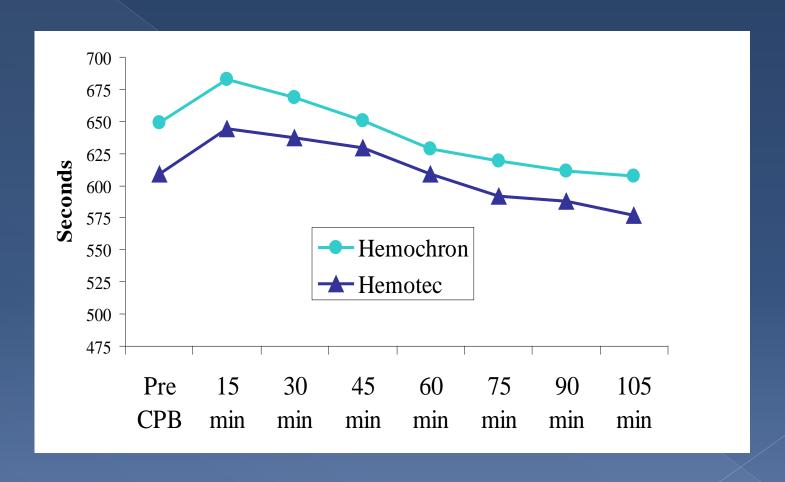
ACT and aPTT


- Why are the results from different systems SO VERY different?
 - Multiple activators
 - > Multiple detection mechanisms
 - > NO standardization
- ACT Differences

A Little History

- 1969 -HEMOCHRONOMETER
 - > Hattersley ACT
 - Automated heating
 - Objective fibrin clot detection
 - two different activators
 - CA510 (later FTCA510)
 - diatomaceous earth
 - P214 glass bead

Two assays for separate uses



1980's

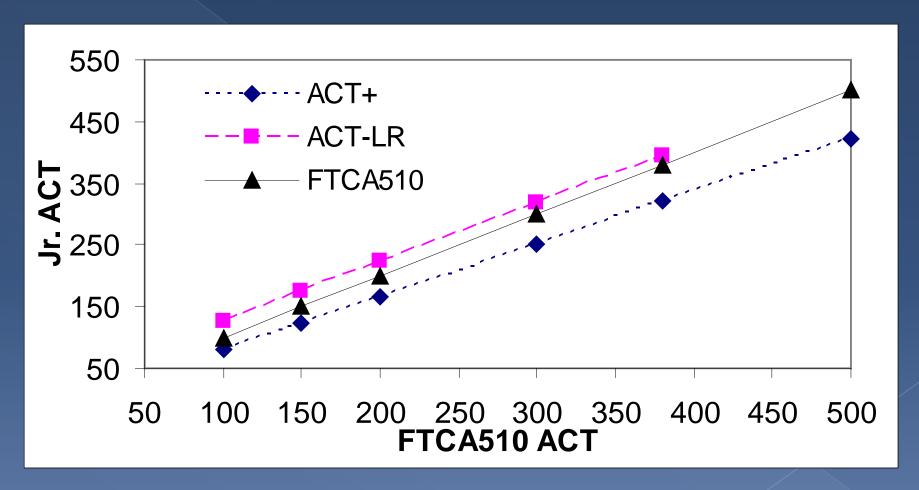
- HemoTec ACT (later Medtronics ACTPlus)
 - Add blood to dual cartridge
 - Liquid kaolin activator
 - Flag moves up and down
 - As fibrin forms, motion slows
 - Instrument displays clotting time

Lower values than CA510 –

differences ignored by clinicians

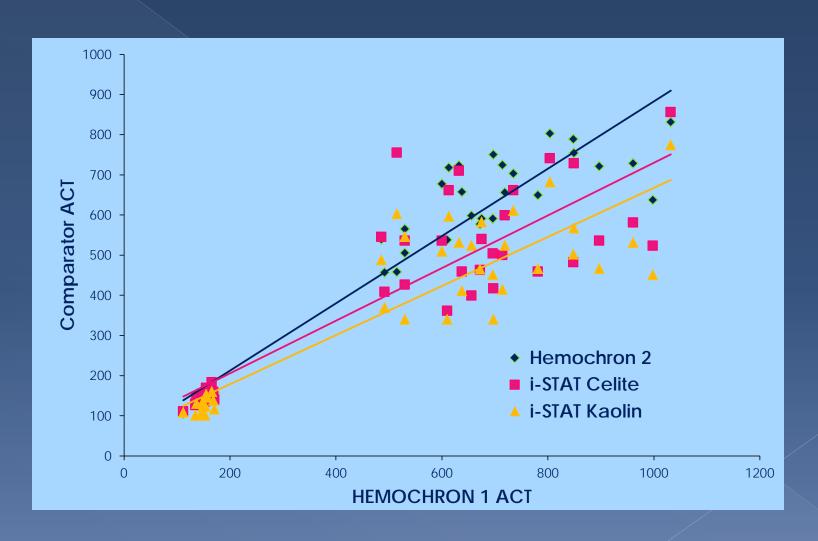
1980's - ACT Differences

- Reported in literature >20 years
 - > Clinical evaluations of Hemochron mid 1970's
 - > By 1981
 - poor correlation between ACT and heparin level
 - > By 1988
 - Hemochron and HemoTec clinically different
- Early '80's to Present
 - Improved clinical outcome with ACT use
 - NACB Laboratory medicine practice guideline for point of care coagulation testing 2007
 - http://www.aacc.org/SiteCollectionDocuments/NACB/LMP G/POCT/Chapter%204.pdf


1990's

- Microsample ACTs Hemochron Jr
 - > Add blood to sample well, press start
 - Silica, kaolin and phospholipid (ACT+)
 - Diatomaceous earth (ACT-LR)
 - Sample pumped across restriction
 - Flow slows with clot formation
 - Optics measure motion
 - Clotting time displayed

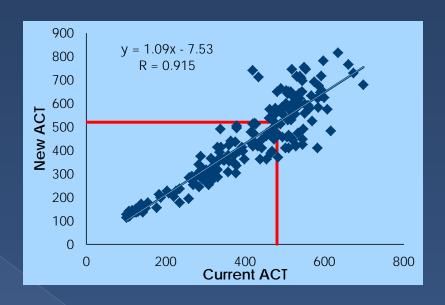
Clotting Times Different



2000

- Abbott i-STAT
 - Add blood to cartridge, press start
 - Diatomaceous earth or kaolin
 - > Insert into instrument
 - > No clot detection
 - Synthetic thrombin substrate
 - Electro-active compound formed and detected amperometrically
 - "Clotting time" reported

Number don't Match-Surprise!


How can a new ACT be used?

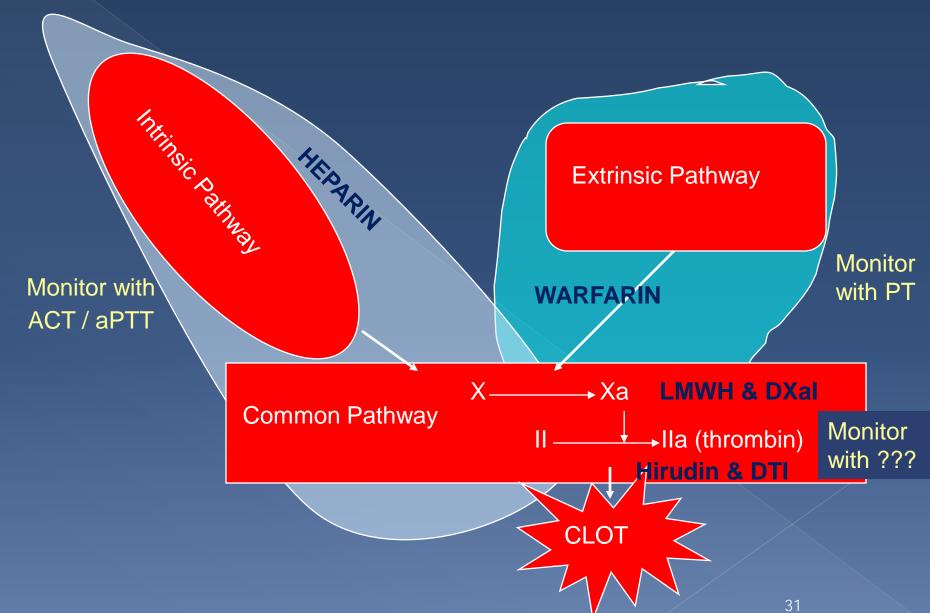
- Evaluate by clinical agreement
 - Standard split sample correlation
 - Samples across entire range
 - Correlation coefficient
 - $R \ge 0.88$
 - > Two by Two table of agreement

Clinical Correlation

OCVOR example

Current	New	N	%
<u>≥</u> 480	≥ 520	72	34%
<u>></u> 480	< 520	19	9%
< 480	≥ 520	7	3%
<480	<520	117	54%

- 88% agreement
 - 21 of 26 discrepancies
 - Current value within 10% of 480
 - 5 of 26 discrepancies
 - New leads to additional heparin given


Clinical Comparison

- Data used to predict new target time
- Clinical agreement determined from predicted target time
- Only method of value in ECMO, sheath pull
 - Range of values too small for correlation analysis

Direct Thrombin Inhibitors

- Direct thrombin inhibitors (DTIs)
 - Used if patient at risk for HIT
 - Heparin induced thrombocytopenia
 - "Heparin allergy"
 - Argatroban
 - Angiomax
- No ACT FDA cleared for monitoring DTIs

Coagulation Testing

ACT Monitoring - DTIs

- Argatroban
 - Synthetic analog of L-arginine
 - Reversible binding to thrombin
 - > PCI monitoring: ACT 300 450
 - Papers state standard ACT targets for CPB

Angiomax

- Synthetic analog hirudin (bivalirudin)
 - Reversible binding to thrombin
- Labeling requires ACT after initial bolus
 - Original studies with Hemochron ACT-LR
 - Any ACT >250 sec

Summary

- ACTs are Global Assays
 - Used to monitor heparin
 - Heparin is non-homogenous
 - Difference by manufacturer & Lot
- ACTs differ:
 - By manufacturer
 - By activator
 - By detection mechanism
- Must establish clinical equivalence
 - New target times that reflect clinical practice