Coagulation Testing at the Point of Care

Marcia L. Zucker, Ph.D. ZIVD LLC

Objectives

- Explain why ACT target times are system specific
- Determine how to choose between aPTT and ACT for heparin monitoring
- Discuss the differences in clinical application between POC and lab PT/INR tests

Coagulation Testing

Monitoring hemostasis

Coagulation Made Simple

Coagulation Testing

What is Heparin?

- Glucopolysaccharide
- MW range: 6,000 25,000 daltons
- Only ~1/3 molecules active
 - Must contain specific sequence of glucosaccharides to function

Heparin Effects on Coagulation

FDP

Why Monitor Heparin?

- Potency varies by manufacturer
 - > Potency varies by lot
- Dose response varies by patient
 - Half life ranges from 60 120 minutes
 - > Non-specific binding
- Functions by accelerating action of antithrombin
 - Antithrombin level critical for appropriate response

How to Monitor Heparin?

- Laboratory measures of activity
 - α Factor Xa
 - α Factor IIa (thrombin)
 - No clear correlation between heparin activity and patient outcome
 - > TAT generally too long for peri-procedural use
- Viscoelastography
 - TEG / ROTEM
 - Reflects entire coagulation process
 - Requires interpretation
 - > TAT generally too long for peri-procedural use
- ACT

What is an ACT?

- Modified Lee-White clotting time
 - Add blood to glass tube, shake
 - Place in heat block
 - Visual clot detection
- First described in 1966 by Hattersley
 - Activated Clotting Time
 - Add blood to glass tube with dirt, shake
 - Diatomaceous earth activator
 - Place in heat block
 - Visual clot detection
 - Proposed for both screening for coagulation defects and for heparin monitoring

Activated Clotting Time

Why do we use an ACT?

- Point of Care
 - Immediate turn around
 - > Rapidly adjust anticoagulant dosing as needed
- Literature supports use of ACT
 - Poor correlation between ACT & heparin level (1981)
 - Hemochron and HemoTec clinically different (1988)
 - Differences ignored by clinicians, yet...
 - Improved clinical outcome with ACT use
 - Reviewed: 2007 NACB Laboratory medicine practice guideline for point of care coagulation testing
 - https://www.aacc.org/science-and-practice/practiceguidelines/point-of-care-testing

Why do ACTs Differ?

- Activator
 - diatomaceous earth; kaolin; glass beads;
 thromboplastin; combinations
- Sample measurement
 - > Manual; automated
- Sample mixing
 - Manual; automated; physical; chemical
- Endpoint detection
 - Clot; surrogate marker
- By design!

Semi - Automation - 1969

• HEMOCHRONOMETER

- > Later HEMOCHRON
- Add blood to tube, shake
 - Manual sample treatment
- Place in test well
 - Automated heating
 - Mechanical, objective fibrin clot detection
- > Two different activators
 - CA510 (later FTCA510)
 - Diatomaceous earth
 - P214 glass bead

Two assays for separate uses

1980's

- HemoTec ACT (later Medtronics ACTII)
 - > Add blood to dual cartridge
 - Liquid kaolin activator
 - Place in instrument
 - Automated mixing
- Results don't match Hemochron

1990's

- Microsample ACTs Hemochron Jr
 - Add blood to sample well, press start
 - Automated sample measurement
 - Automated mixing
 - Objective clot detection
- Results still don't match

2000

- Output Description

 Output Description
 - > Thrombin detection
 - Synthetic thrombin substrate
 - Electro-active compound formed, detected amperometrically
 - Clotting time reported
 - > First non-mechanical clot detection
 - Direct chemical assessment of the appearance of active thrombin

Where is an ACT Used?

- Cardiac surgery
 - Recommended as 1° method in AmSECT guidelines
- Percutaneous coronary intervention (PCI)
- Interventional cardiology
- ECMO
- Critical care
- Interventional radiology
- Electrophysiology
- Vascular surgery
- etc.

Dosing & Target Times

- "Standard" target times
 - Most developed with manual ACT
 - Suggested due to high variability
 - No evidence for optimal ACT targets
- Drug defined targets
 - > GPIIb/IIIa Inhibitors; Angiomax
 - Drug manufacturer defines ACT target
 - Does not specify ACT type
 - Ignores "off-label" indications

How to Compare ACTs?

- Clinical Correlation
 - In clinical setting to be used
 - Do not compare in CVOR to change in cath lab
 - Data MUST span current target times
 - Correlation coefficient
 - R > 0.88

CORRELATE DOES NOT MEAN MATCH

Clinical Comparison

- Data used to predict new target time
- Clinical agreement determined from predicted target time
 - Only method of value in ECMO, sheath pull
 - Range of values too small for correlation analysis

Evaluate Clinical Agreement

OCVOR example

Current	New	N	%
<u>≥</u> 480	≥ 520	72	34%
<u>></u> 480	< 520	19	9%
< 480	≥ 520	7	3%
<480	<520	117	54%

- 88% agreement
 - 21 of 26 discrepancies
 - Current value within 10% of 480
 - 5 of 26 discrepancies
 - New leads to additional heparin given

Help clinician overcome differences

Source:

- > Reagent differences
- > Technology differences
- No standardization

Alter target times to Maintain clinical protocols

Coagulation Testing

ACT versus aPTT

ACT

- Activated clotting time
- > POC Only
- Low, moderate or high dose heparin
 - System dependent

aPTT

- Activated partial thromboplastin time
- Laboratory or POC
- Low dose heparin only
 - System dependent upper limit

aPTT test methods

- Standard Laboratory
 - Platelet Poor Plasma
 - Sodium CitrateAnticoagulant
 - Dilution in testing
 - Variable Preanalytical Delay
 - Instruments
 - > Reagents

- Point of Care
 - Whole Blood
 - No Added Anticoagulant
 - No Dilution
 - No Preanalytical Delay
 - Instruments
 - Reagents

Correlate Does Not Mean Match

Coagulation Testing

Heparin versus Warfarin

Drug	Mechanism of Action	Cofactor	Monitor	Effective
Heparin	Direct thrombin inhibition	Anti- thrombin	aPTT ACT	Immediate
Warfarin	Decrease factor production	Vitamin K	PT	3-5 day delay

What is Warfarin?

- Rat poison
- Cause of "sweet clover disease"
- Orally active anticoagulant

Warfarin Effects on Coagulation

VBWG

Anticoagulant action of warfarin: Slow onset

- 1. KO-reductase warfarin sensitive
- 2. K-reductase relatively warfarin resistant

Adapted from Hirsh J, et al. *Chest.* 2001;119:85-215.

Why Monitor Warfarin?

- Potency may vary by manufacturer
- Dose response varies by patient
 - Dietary interactions
 - Life-style influences
- Functions by decreasing production of Vitamin K dependent clotting factors in liver
 - Delayed onset of anticoagulation

How to monitor warfarin?

- Quick, et. al., 1937 Prothrombin Time
 - Combine thromboplastin, calcium and patient plasma
 - Measures activity of factors I, II, V, VII, X
- 40 50 years pass
 - > Thromboplastin isolated from:
 - Different species
 - pig; cow; human; etc.

Different organs

brain; thymus; lung; etc.

- > All yield different results
 - Results vary by instrument system in use
 - Manual tilt tube "gold standard"
 - Fibrometer; automated coagulation systems
- > PT ratios adopted to determine therapeutic range

INR

- 1983 WHO and ISTH recommend the use of the INR to standardize PT result reporting
- International Normalized Ratio (INR)
 - > ISI = international Sensitivity Index
 - > INR target ranges are specified by patient populations, e.g.,
 - DVT, Afib, Atrial MHV: INR= 2.0 3.0
 - Mitral mechanical heart valve: INR= 2.5 3.5

• Individual variation
$$INR = \left(\frac{PT_{patient}}{PT_{meannormal}}\right)^{ISI}$$

35

Key variables

ISI

- Initially determined by reagent manufacturer
- Traceable to IRP
 - International Reference thromboplastin Preparation
- > WHO defined process
 - Calibration up to INR = 4.5
 - manual tilt tube method reference
- Local calibrations can be performed to determine the instrument specific ISI¹

Mean normal PT

The mean normal PT should be determined for each new batch of thromboplastin with the same instrument used to assay the PT¹

Effect of Local Calibration

Local calibration may introduce variability

 Same sample yields different results depending on calibration method

POC Calibration

- Manufacturer assigns ISI and mean normal PT (MNPT)
 - > Lot specific
- Traceable to IRP
 - Often through secondary standard
- Cannot be changed by end user
 - Does not vary by location of testing

Will POC Results Match the Lab?

but it WILL Correlate

Why not?

- Point of Care
 - > Whole Blood
 - No Added Anticoagulant
 - > No Dilution
 - No Preanalytical Delay

 - > Reagent
 - > Instrument
 - Clot detection

- Laboratory
 - Platelet Poor Plasma
 - Sodium Citrate Anticoagulant
 - > 1:9 Dilution
 - Variable Preanalytical Delay

Correlation by lab system

Correlation data from: Plesch et. al, Thromb Res 2008; 123:381–9

Thromboplastin	Analyzer	calibration	Thromboplastin	Analyzer	calibration
Innovin	CA1500	Local vs rTF/95	HepatoQuick	STA-R	Manufacturer
Recombiplastin	MLA1800	Local vs rTF/95	Thrombotest	KC10	Local vs OBT/79
Neoplastin Plus	STA-R	Manufacturer	Thromboplastin C Plus	CA1500	Manufacturer

Expectations Lab to Lab

- 10 OAT patients across 7 analyzer/ reagent combinations
 - McGlasson, DL 2003: Lab Med 34: 124 9.

Expectations POC to lab

- 36 patients over 4 visits each
 - > 3 POC; 1 lab
 - Solvik et. al., 2010: Clin Chem 56:1618–1626 (2010)

Variability of Lab INR

- Observed:
 - > + 0.4 at INR = 2.0
 - > + 0.8 at INR = 3.0
 - > + 1.2 at INR = 4.0
- Standardization as with glucose is unlikely
 - discrete analyte to be tested
 - versus a biologic process

Patient Management

- 1. Understand limitations in the INR
 - Whenever a patient undergoes duplicate testing on different systems, there is the potential for disagreement
- 2. Attempt to have patients managed with a consistent methodology

How to Compare INR Results

- Lower dose?
- Keep same dose?
- Raise Dose?

- Test Again?
- Test more often?

Why perform POC PT?

- Results Available While Patient is Present
 - Improved Anticoagulation Management
 - Improved Standard of Care
 - > Staff Efficiency
- Immediate Retesting (if needed)
 - > Fingerstick Sampling

LIMITATION!!!!!!!

- INR was developed to monitor effect of vitamin K antagonists (warfarin, others)
- INR is inappropriate scale for monitoring coagulopathies
- Most POC PT/INR tests cleared ONLY for monitoring patients receiving oral anticoagulation therapy such as Coumadin or warfarin.

POC Coagulation Testing

Monitoring hemostasis

Marcia L. Zucker mlzucker.zivd@gmail.com