Molecular Diagnostics at Point of Care

When will we get there; and where is 'there' anyway?

Sheldon Campbell M.D., Ph.D.

Pathology and Laboratory Medicine, VA Connecticut

Department of Laboratory Medicine, Yale School of Medicine

Learning Objectives

- Participants should be able to:
 - Describe the basic work-flow of molecular diagnostic testing.
 - Describe some major amplification and detection methods.
 - Recognize the properties of analytes that make them candidates for molecular testing.
 - Recognize emerging molecular diagnostic platforms that may be usable at point-of-care.
 - Assess platforms for influenza testing in the context of POCT.
 - Describe unique quality issues in molecular diagnostics which impact their use at point of care.
 - Recognize Campbell's Laws of POCT and their implications for the future of molecular methods.

What is Molecular Diagnostics?

- Analysis of DNA or RNA for diagnostic purposes. Molecular diagnostics have found widespread application with the advent of amplification methods (PCR and related approaches).
- Huge scope
 - ► From single-target molecular detection of pathogens...
 - To pharmacogenomic analysis of metabolism genes for drug dosing...
 - To whole genome sequencing for disease susceptibility and God knows whatall.

Molecular Diagnostic Testing

- Specimen
- •DNA / RNA Extraction
- Amplification of Target
- Detection of amplified target
- Interpretation and Clinical Use

Why Amplify?

- Sensitivity
 - can detect small numbers of organisms
 - can even detect dead or damaged organisms
 - can detect unculturable organisms
- **■**Speed
 - ■4-48 hour turnaround
 - inoculum independence

Why Amplify, continued

- Targets
 - ■Test for things there's no other way to test
 - Uncultivable bugs
 - **■**Genetics
 - Pharmacogenomics
 - Prenatal testing
 - Hypercoagulability, etc.
 - ■Oncology
 - Hematologic malignancies
 - Diagnostic markers
 - Minimal residual disease

Why Not Amplify?

- ■Clinical significance?
- Technical problems
 - **■**Contamination
 - **■**Inhibition
- **■**Cost
- **■**COST
- **■**CO\$T

Extraction

•Specimen

•DNA / RNA Extraction

•Amplification of Target

•Detection of amplified target

•Interpretation and Clinical Use

- **■** DNA/RNA Extraction
 - Depends on:
 - → Specimen source (blood, CSF, stool)
 - Target organism (human tumor, CMV, M. tuberculosis)
 - Target nucleic acid (DNA, RNA)
- Increasing automation
 - Magnetic or other separation methods.
 - REQUIRED for POC

Amplification

- Nucleic Acid Amplification means taking a small number of targets and copying a specific region many, many times.
- ■NAAT, NAT, etc; commonly-used abbreviations
- ■PCR is the most common amplification scheme, but there are others!

Amplification Enzymology

Lots!

- DNA polymerase
 - makes DNA from ssDNA, requires priming
- RNA polymerase
 - makes RNA from dsDNA, requires specific start site
 - Reverse transcriptase
 - makes DNA from RNA, requires priming
- Restriction endonucleases
 - cut DNA in a sequence specific manner

Polymerase Chain Reaction (PCR)

DNA polymerase extends the primers (40-80°C) to produce two new double-stranded molecules

Repeat the split-bind-extend cycle

This 'short product' amplifies exponentially in subsequent split-bind-extend cycles, driven by the temperature changes in a 'thermal cycler'.

Reverse Transcriptase PCR (RT-PCR)

Target **RNA** + Primer oligonucleotide

Primer binding (RT - 37°C)

Reverse Transcriptase (RT) makes a DNA copy of the RNA target

The DNA copy is used in a PCR reaction

Other Amplification Methods

- ■PCR isn't all there is!
 - Transcription-mediated amplification (TMA)
 - Loop-mediated isothermal AMPlification (LAMP)
 - **■**Others
 - Isothermal technologies decrease the complexity of the instrument required.

Detecting PCR Products in the Old Days

- •Specimen

 •DNA / RNA Extraction

 •Amplification of Target

 •Detection of amplified target

 •Interpretation and Clinical Use
- Gel electrophoresis (± Southern blotting)
- → Enzyme-linked assays
- HybridizationProtection/chemiluminescent assay
- A multitude of formats available, to serve market and technical needs

Real-Time PCR

- Combination
 - Detection
 - Amplification
- RT-PCR Instruments monitor product formation by detecting change in fluorescence in a tube or well during thermal cycling.
- Frequently use PCR for amplification
 - **■** Robust
 - Off-patent

Figure 2. Model of a single amplification plot, showing terms commonly used in realtime quantitative PCR Figure from Applied Biosystems' DNA/RNA Real-Time Quantitative PCR bulletin).

Real-Time PCR Instruments

- Contain three functional components
 - A thermal cycler
 - Mostly a single cycler that cycles all the tubes / wells at the same time
 - ■The SmartCycler and GeneExpert have individually controllable cycler elements.
 - ➡ Fluorescent detection system
 - ■The number of fluorescent detection channels determines how many different probes you can use.
 - ■An internal amplification control is a must.
 - A computer to run the components, interpret the data, etc.

Real-time PCR Chemistries

- Essential Fluorescence Chemistry
 - Shorter wavelength=higher energy
 - Activation with high-energy light, usually UV
 - Emission at a lower energy, usually visible
 - Different fluorochromes have different (and hopefully distinguishable) activation and emission wavelengths.

The more fluorochromes a real-time instrument can detect, the more 'channels' it is described as having, and the more targets can be detected.

Quenching

Quenching

- Fluorescence occurs when a photon bumps an electron to a higher energy level, then another photon is emitted when it drops back to ground state.
- Some compounds ('quenchers') suck up that energy before it can be reemitted, 'quenching' the fluorescence.

This is distance dependant; the closer the molecules are the more efficient the quenching.

Fluorescence Resonance Energy Transfer (FRET)

■ A second fluorochrome can suck up the energy from the activated fluorochrome and re-emit it at its emission frequency.

This is distance dependant; the closer the molecules are the more efficient the energy transfer.

Real-Time Detection Schemes

■ Taqman Probes

► FRET Probes

- Molecular Beacons
- Several others

Contamination!

- What happens when you make 10⁶ copies of a single short sequence in a 100ml reaction?
 - ► You end up with 10⁴ copies/ul
 - What happens when you pop the top off a microcentrifuge tube?
 - ...or pipet anything
 - ...or vortex anything
 - **■**...or...

You create aerosols

- Droplet nuclei with diameters from 1-10 μm persist for hours/days
- Each droplet nucleus contains amplified DNA
- Each amplified molecule can initiate a new amplification reaction

Ways to Prevent Contamination

- Meticulous technique
 - Hoods, UV, bleach, physical separation of work areas
- Assay design
 - avoid opening tubes for reagent addition, etc.
 - reactions that produce RNA products
 - negative controls
 - real-time assays with closed-tube detection
- Chemical and Physical Inactivation

POC Molecular Diagnostics

- Infectious Disease
 - Outpatient POC
 - GC / Chlamydia
 - Group A strep
 - HIV / HCV viral load
 - Gl pathogens
 - Acute-care POC Lab vs POC
 - Respiratory pathogens
 - CNS pathogens
 - Nosocomial / Screening
 - MRSA / VRE
 - **C.** difficile
 - Biopreparedness
 - Military development and applications
 - Diseases of Under-resourced populations
 - Tuberculosis incl drug-resistance

- Others
 - Pharmacogenetics
 - Hypercoagulability
 - Other genetic diseases
 - Oncology
 - Lower priority for POC
 - Large number of diseases
 - Solid tumors need tissue
 - Generally easier followup.
- NOTE: the ones in pink actually exist in some FDAapproved form of moderate complexity or waived. The rest are in active development.

What's First?

- Things that're easy
 - MRSA, already on GeneExpert (arguably the first simple molecular platform)
- Things that're hot
 - Influenza and other respiratory viruses
- Things where existing tests perform poorly
 - Respiratory viruses in general
 - Group A strep
 - Group B strep
 - Things for hard-to-reach populations
 - Chlamydia and gonorrhoea
 - Tuberculosis and other diseases in poor parts of the world.

What Will a Molecular POC Test Look Like?

- Automated, fully integrated
 - **■**Sample preparation
 - Amplification and detection
 - Reproducibility
 - Reliability
 - ■Such systems are emerging
- Quality need not be compromised for POC molecular tests
 - Unlike most of the antigen tests versus labbased methods

Why Molecular? Rapid flu versus Other Methods

Rapid Test¤	Sens%×	Spec%¤	Compared With¤	Comments¤	Reference¤
Directigen ¤	58.8¤	99.2¤	Molecular¤	A&B performance combined¤	Liao et al JCM 47(3):527-32, 2009 Mar¤
3M ⊷	75⊷	98⊷	Culture¤	Archived specimens¤	Dale et al JCM 46(11):3804-7,
QuickVue ←	73⊷	99.5⊷			2008 Nov¤
BinaxNow¤	55¤	100¤			
BinaxNow¤	53¤	п	RT-PCR¤	2 of 237 samples were flu B	Landry et al JCV. 43(2):148-
				pos by RT-PCr but flu A by NOW. ¤	51, 2008 Oct¤
BinaxNow¤	61¤	100¤	RT-PCR¤	DFA was 81% sensitive¤	Rahman et al Diag Micro Infect Dis 62(2):162-6, 2008 Oct¤
RemelXpect⊷	47.7⊷	98.7⊷	Culture¤	20.3/99.8 Flu B⊷	Cruz et al JCV 41(2):143-7,
BinaxNow¤	78.3¤	98¤		35.9/99.9 Flu B¤	2008 Feb¤
BinaxNow¤	52¤	н	RT-PCR¤	70% in days 1-3 of disease¤	Nilsson et al Inf Cont & Hosp Epi 29(2):177-9, 2008 Feb¤
Directigen ¤	42¤	96¤	Culture¤	н	Rahman et al Diag Micro Infect Dis 58(4):413-8, 2007 Aug¤
BinaxNow⊷	73⊷	99⊷	RT-PCr¤	Sensitivity only 30% vs flu B	Hurt et al JCV 39(2):132-5,
Directigen⊷	69⊷	100⊷		for all¤	2007 Jun¤
QuickVue¤	67¤	100¤			
Quickvue¤	85¤	97¤	RT-PCR¤	pa	Mehlmann et al JCM 45(4):1234-7, 2007 Apr.¤
Directigen + Quickvue + BinaxNOW¤	63¤	97¤	RT-PCR¤	Data pooled from all rapids; ¤	Grijvala et al Pediatrics. 119(1):e6-11, 2007 Jan¤

Convenience sample of recent literature; selected by Medline search + fit to single page

Molecular Testing for Influenza

- Real-time methods can provide result in <1h.
- Molecular methods as a class exceed culture in sensitivity (probably due to viral loss in transport)
- Detection properties do vary from system to system do your homework!
- Moderately to very expensive equipment
- Multiple methods of waived to high complexity.
- Now clearly the 'gold standard'
- Information sources:
 - http://www.cdc.gov/flu/pdf/professionals/diagnosis/table1molecular-assays.pdf
 - CAP Website for some price information
 - Manufacturer's web sites and PubMed for pictures, workflow and other information.

FDA-approved Molecular Influenza Tests

- Waived complexity
 - Alere i Influenza A and B
 - Roche LIAT Influenza A/B Assay
- Moderate or High complexity.
 - Cepheid Xpert Flu Assay
 - eSensor Respiratory Viral Panel
 - ➡ FilmArray Respiratory Panel
 - Prodesse PROFLU and PROFAST
 - Quidel Molecular Influenza A+B Assay
 - Qiagen Artus Influenza A/B Rotor-gene RT-PCR kit
 - Simplexa Flu A/B & RSV and Flu A/B & RSV Direct and Influenza A H1N1 (2009)
 - Verigene Respiratory Virus Nucleic Acid Test and RV+ Test
 - X-TAG Respiratory Viral Panel and RVP-FAST

Alere I Influenza A&B

- CLIA-waived
 - Bring supplies to room temperature.
 - Put test base and sample receiver on instrument; allow to warm.
 - Place swab in sample receiver, mix.
 - Apply transfer cartridge to sample receiver.
 - Move transfer cartridge to test base.

Roche LIAT Influenza A/B Assay

- **■**CLIA waived
- LIAT stands for Lab-In-A-Tube
- → Detects Influenza A&B
- Sample to answer .5h

Cepheid Xpert Flu Assay

- Moderately complex
- Detects Flu A and B; discriminates 2009 H1N1.
- Flu + RSV / cartridge available
- ► Sample to answer ~1h
- GeneXpert Xpress waived in 12/2015

Insert cartridge and

FilmArray Respiratory Panel

- Moderately complex
 - Working toward waived
 - ► From: Biofire (BioMerieux)
- Detects: Influenza A and B (discriminates H1, H3, 2009 H1) Respiratory Syncytial Virus, Parainfluenza 1, 2, 3 and 4 virus, Human Metapneumovirus, Rhinovirus/Enterovirus, Adenovirus, 4 Coronavirus variants, Bordetella pertussis, Mycoplasma pneumoniae, and Chlamydophila pneumoniae
 - Sample to answer ~1h

Simplexa Flu A/B & RSV and Flu A/B & RSV Direct and Influenza A H1N1 (2009)

- Highly complex (Direct version is Moderately complex)
- From Focus Diagnostics / 3M
- Detects Influenza A&B and RSV; a separate test discriminates 2009 H1N1
- Sample to answer ~4h, ~2h for Direct

Verigene Respiratory Virus Nucleic Acid Test and RV+ Test

- Moderately complex
- From Nanosphere
- Detects Influenza A & B, RSV A&B, Plus version discriminates H1, H3, and 2009 H1N1
- Approved for NP swabs
- Sample to answer 3.5h

Are All Molecular Tests The Same?

- Of course not. That would be too simple.
- Numerous, rather confusing studies.
 - There are few comparisons of multiple methods. Sorry.
 - Don't take this as a comprehensive assessment of both assays; neither performed as well as the authors' homebrew RT-PCR.
- Performance DOES vary within the molecular tests.
- Pay attention not only to sensitivity / specificity numbers, but also to comparator method.
 - Comparisons with culture make a method look better; comparisons with a highly optimized molecular method or with a panel of different methods is a more stringent comparison.

TABLE 1

Sensitivity of the Verigene RV+ test and the Simplexa Flu A/B & RSV kit by virus (n = 350)

Test	% Sensitivity for a:					
	Influenza A virus	Influenza B virus	RSV			
Verigene RV+	96.6 (56/58)	100 (21/21)	100 (93/93)			
Simplexa	82.8 (48/58)	76.2 (16/21)	94.6 (88/93)			

Comparative Evaluation of the Nanosphere Verigene RV+ Assay and the Simplexa Flu A/B & RSV Kit for Detection of Influenza and Respiratory Syncytial Viruses; Kevin Alby, Elena B. Popowitch and Melissa B. Miller, J. Clin. Microbiol. January 2013 vol. 51 no. 1 352-353

Speed and Multiplexing and Complexity

Does it Make Sense to Test?

INFECTIOUS DISEASE/ORIGINAL RESEARCH

Cost-Utility of Rapid Polymerase Chain Reaction-Based Influenza Testing for High-Risk Emergency Department Patients

Andrea Freyer Dugas, MD; Sara Coleman, MPH, MBA; Charlotte A. Gaydos, DrPH, MPH; Richard E. Rothman, MD, PhD; Kevin D. Frick, PhD, MA

- Cost-effectiveness studies are tricky.
- Assuming a \$50,000 per quality-adjusted life-year willingness-to-pay threshold, the most cost-effective treatment option is treatment according to provider judgment from 0% to 3% prevalence, treatment according to a PCR-based rapid influenza test from 3% to 7% prevalence, and treating all at greater than 7% prevalence.
 - ...but this ignored induction of antiviral resistance, transmission of flu, and cost avoidance in tested patients; only treatment cost and effect was counted.
 - "Patients who did not have influenza were not evaluated further because influenza testing or treatment would have no further effect on their care or outcomes."
 - Ann Emerg Med. 2013;62:80-88

When to test?

- Remember false-positives have potentially severe consequences, e.g. non-treatment of a serious bacterial infection.
- Test during the flu season.
 - This is the conventional wisdom, to be modified in travelers and people with contacts who are travelers. Note that other viruses don't have influenza's striking seasonality.
 - Molecular tests may have higher specificity than the old antigen tests, but still; question off-season positives.
- Potential strategies:
 - Seasonal: test Oct-Dec→March or so.
 - Early season retain specimen for confirmatory testing!
 - Incidence-based testing monitor regional influenza per CDC and State systems, begin testing only when influenza reported in the area.
- Remind providers to test early in illness; the best therapeutic results are when drugs are started within 48h of onset.

- Expensive molecular flu tests may be best deployed selectively.
- Consider testing:
 - Patients destined for hospital admission.
 - Compromised patients at high risk likely to benefit from treatment.
- Consider not testing:
 - Otherwise healthy people who probably don't need anything but reassurance and good hydration.
- Remember that influenza and bacteria can and often do co-infect.
 - Really sick patients may have a bacterial superinfection facilitated by the virus.

(Potential) Benefits of Flu Testing

■ For positives...

- Rapid treatment.
- Avoidance of antibiotics and costs and complications thereof.
 - We all know what a large fraction of antibiotics are used for viral infections.
- Avoidance of further workup / admission in some cases.
 - How much will test impact this versus clinical condition of the patient?
- Infection control inpatient and outpatient.
- Patient flow in outpatient settings:
 - diagnosis disposition/treatment onward.
- All these depend on a result provided within the encounter time or shortly thereafter.

■ For negatives...

- Save cost of antiviral therapy.
- Save isolation cost / inconvenience
- Continue diagnostic workup if patient's condition warrants it.

Influenza Specimen Collection

- Specimen collection is probably *the* critical step in influenza testing
 - Good test on a bad specimen = bad test

Nasopharyngeal Wash: Bulb Method

Materials: Saline

1-2 oz. tapered rubber bulb* Viral Transport Medium (VTM)

Specimen container

- 1. Suction 3-5 ml saline into a new sterile bulb.
- 2. Insert bulb into one nostril until nostril is occluded.
- 3. Instill saline into nostril with one squeeze of the bulb and immediately release bulb to collect recoverable nasal specimen.
- 4. Empty bulb into suitable dry, sterile specimen container or one containing VTM, according to virology laboratory requirements.

* Length and diameter of bulb as appropriate for infant, child or adult.

Nasopharyngeal Wash: **Syringe Method**

Materials: Saline

3-5 ml syringe* 2" 18-20 gauge tubing*

Viral Transport Medium (VTM)

Specimen container

- 2. Quickly instill saline into nostril.
- 3a. Aspirate the recoverable nasal specimen. Recovery must occur immediately, as the instilled fluid will rapidly drain.
- 3b. (Alternate) In appropriate cases, patients may tilt head forward to allow specimen to drain into suitable sterile container.
- 4. (If aspirated) Inject aspirated specimen from syringe into suitable dry, sterile specimen container or one containing VTM, according to virology laboratory requirements.

* Length and diameter of syringe and tubing as appropriate for infant, child or adult.

Washes are somewhat better than swabs*

*A general but not-quite universal rule of microbiology: swabs are evil

Specimen Collection – The NP Swab

- NOT A THROAT SWAB. NOT A/NASAL SWAB. A NASOPHARYNGEAL SWAB.
- Important to get ciliated epithelial cells – this is a cellassociated virus
- Test early; more virus is shed early than later in disease.
 - A test a week after onset of symptoms is useless.
 - Children shed more virus than adults
 - Tests tend to be more sensitive in kids

Nasopharyngeal Swab Method

Materials: BD BBL CultureSwab flexible, soft, or regular aluminum wire products or

Nasopharyngeal swab with synthetic fiber tip

1-2 ml Viral Transport Medium (VTM)

Specimen container

- 1. Insert swab into one nostril.
- 2. Rotate swab over surface of posterior nasopharynx.
- 3. Withdraw swab from collection site; insert into transport tube or container with VTM.

Managing POC Molecular

- All the usual QC and QA, plus:
- Interferences
 - Extraction efficiency
 - **Inhibition** by:
 - **■** Blood
 - DNA
 - Internal amplification / extraction controls
- Contamination
 - Extraordinarily sensitive methods
 - **Specimen** cross-contamination
 - Native material transferred from a positive to a negative specimen
 - Collection devices
 - Ports, racks, hands
 - **Amplicon** contamination
 - From amplified material
 - How well is the product contained?
 - Waste disposal
 - Carry-over studies

Future Developments

- Technological advances
- performance
- 📂 speed
- footprint
- Expanded test menus
- quantitative assays
- Resource limited settings

Where are we going?

- ■I've thought about this a lot.
- Derived Campbell's Laws of POCT
- Two Laws, with inpatient and outpatient corollaries
 - Feedback encouraged.

Campbell's First Law of POCT

- Nobody ever went into Nursing because they wanted to do lab tests.
 - ■I can't document this with a literature citation, but it has high face-validity.
 - Anecdotally, our nurses/docs have hated glucose monitoring (still done but loathed), ER troponins (tried, failed), and rapid HIV (tried, failed).

Campbell's Second Law of POCT

- No POC test is easier than checking one more box on the laboratory order form.
 - Waived tests are easy, but much, much harder than checking one more box on a form you already filled out.
 - → A lot of simple, rapid tests end up being done in the lab.

Campbell's Laws Example: Primary Care HIV Testing

- June 8, 2010: Provider A: "Sheldon, has rapid testing been considered to prevent this problem? Would this be feasible? Might allow us to expand testing to highest yield sites (i.e. the ER)..."
- July-October 2010: Set up program, created templated progress notes, ordered kits, trained 20+ Primary Care providers to do rapid HIV tests.
- October 2010-January 2011: Number of rapid HIV tests performed: 1
- January 2011: Provider B: "Even though I am one of the biggest proponents, I have only done one, and that was for another provider who didn't know how to do it. I don't see people clamoring to do the test. I'm interested in Provider A's thoughts."
- Response, Provider A: "We have had very little use in <our clinic>. I think that it's so easy to send the pt for bloodwork that there is not much demand."
- January 7, 2011, POCC: "Next week I will be coming around to the Primary Care areas to collect the HIV kits. Please have them easily accessible. Thank you and have a pleasant weekend."

Campbell's Laws: Inpatient Corollaries

- An inpatient POC test is useful only if:
 - The time for transport to the lab for THAT SINGLE ANALYTE significantly and negatively impacts care, OR
 - The test is performed on an easilyobtained sample (e.g. fingerstick blood) more frequently than routine blood draws are obtained.

Campbell's Laws: Outpatient Corollaries

- An outpatient POC test is useful only if:
 - The test result is available during the patient visit AND a decision can be made or action taken on the basis of it without waiting for other lab results, OR
 - If you can make money doing it.

Campbell's Outreach / Developing-World Corollaries

- Sometime's there's no lab-order form.
- Sometimes there's no nurse.
- Sometimes there's no refrigeration, power, or lights.
- Campbell's Laws should not be applied outside of a healthcare environment where the basic terms apply.

Recommendation

- Point-of-care testing, especially those analyses that are conducted at the patient's bedside, in a physician's office, or in a clinic, is a growing trend in health care, and clinical microbiology professionals should prepare for this future reality. Clinical microbiologists must ensure that the individuals who perform point-of-care testing understand how to interpret the results. Clinical microbiologists should be called upon to help select the assay targets, advise on test formats, and participate in clinical trials."
- From "Clinical Microbiology in the 21st Century: Keeping the Pace". American Academy of Microbiology, 2008. Available on-line at: http://www.asm.org/academy/index.asp?bid=58