Reducing Pre-analytical Errors

Christopher R. McCudden, Ph.D., FACB, FCACB, DABCC

University of Ottawa The Ottawa Hospital Eastern Ontario Regional Laboratory Association Ontario, Canada

Objectives

- List the three different phases of the testing process and identify which areas have the highest risk of error
- Describe strategies to minimize preanalytical error
- Explain methods to ensure safe practices for point of care testing

What is the most common POC error?

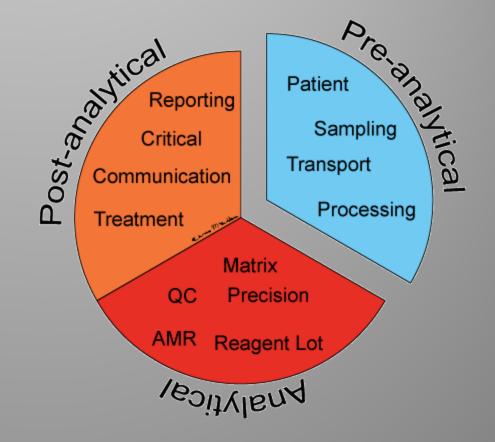
POLL QUESTION

- A. Patient misidentification
- B. Poor sample collection technique
- C. Deviation from analytical procedure
- D. Improper device maintenance (e.g QC, reagent storage)
- E. Improper/lack of recording results
- F. Safety (e.g. hand hygiene, device reuse)
- G. Other

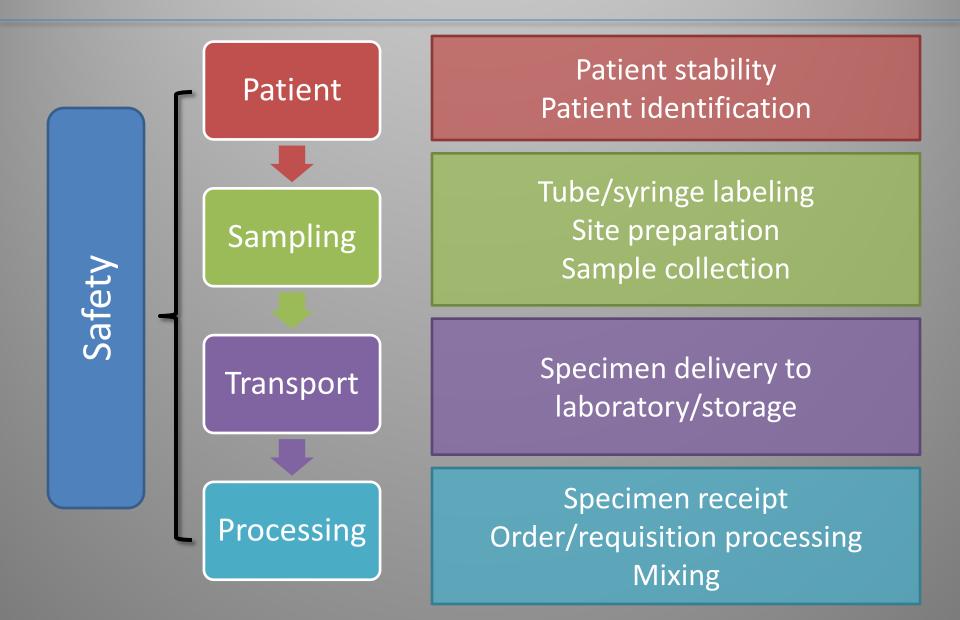
Outline

- Introduction
- Pre-analytical Phase:
 - – Patient

Safety


– Sampling

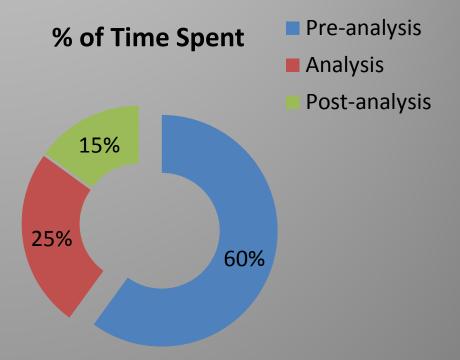
- Transportation, Storage, and Mixing


• Summary and Key Points

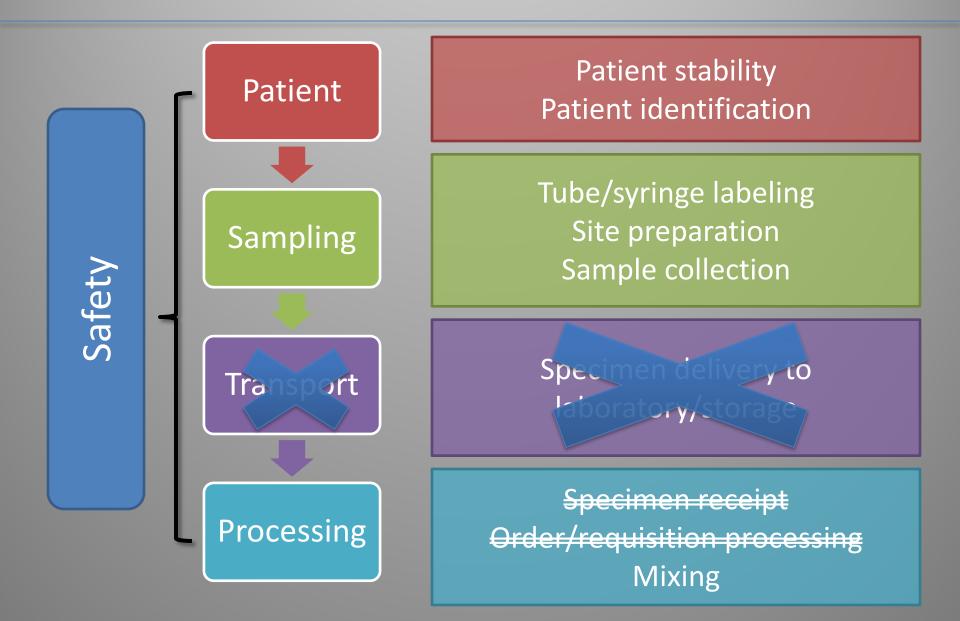
The Pre-analytical Phase

- Processes that occur <u>before</u> a specimen is analyzed
- Up to 75% of all testing errors occur in the preanalytical phase
- Preanalytical errors can cause harm to patient

Parts of the Pre-analytical Phase



Pre-analytical Challenges


- Many people involved:
 - Physicians: writing orders, instructing patients/staff
 - Nurses/Phlebotomists/RTs: patient ID, specimen collection
 - Runners: transport
 - Lab staff: receipt and processing
- More challenging in a teaching hospital
- Pre-analytical variables/errors are often unknown
 - Testing personnel
 - Clinicians interpreting the results

Understanding Pre-analytical Issues

- Most steps
- Most people
- High urgency & stress
- Most variation in work environment, technique, and training

The Pre-analytical Process: POC

POC-Specific Pre-analytical Challenges

• Non-lab staff

- Limited Training & Experience
- Divided Focus
- Patient complexity

Patient Variation THE PATIENT Sampling Transport Processing

Starting on the Right Foot: Identify the Patient

- Incorrect/missing patient and sample IDs are frequent and critical pre-analytical errors
- Risk of patient harm
 - May harm two patients if results are switched
 - Over or under treatment/diagnosis/followup

Approximately how much does a single misidentification error cost?

- A. 0-5 dollars
- B. >5 to 20 dollars
- C. >20 to 50 dollars
- D. >50 to 100 dollars
- E. >100 dollars

Consequences of Patient Misidentification

- Financial Implication of mislabeling*:
 - \$500/incident
 - 250/month
 - Annual cost = USD 1.5 million

- Failure to provide proper and immediate care to a patient
- Inappropriate care to a patient

*Excluding medicolegal or liability costs

Avoiding Identification Errors

- Positive Patient Identification x2
- Correlate Orders with Patient Name
- Identification on Sample Device at site of Collection
 - Patient ID label attached
 - Pre-barcoded arterial syringe
- Enter a patient ID into the analyzer before analysis
- Use barcode readers
- Ensure user competency

Test-Specific Advice: Patient Variables

- FIO2 and application of device
 - Mode of ventilation and Patient compliance with supplemental O2
- Duration of changes in vent settings
 - Approximately 5-10 minutes post change up to 20% in stable Patient (Cakar, 2001, Intensive Care Medicine)
 - Up to 30 minutes post change in Patient with Obstructive Lung Disease (Parsons, 2002)
- Patient's respiratory rate, temperature, position, activity
- Ease of (or difficulty with) blood sampling

Patient Sampling Safety Transport Processing

SAFETY

POC Testing and Safety

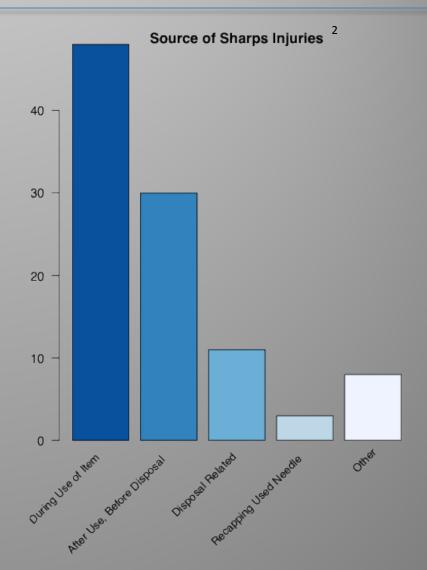
- POC testing != no risk
 - Employee:
 - Needle stick injury
 - Blood exposure
 - Patient:
 - Nosocomial infection
 - Drug resistant pathogens, Hepatitis

POC Testing and Safety: Patients

- Reports of multiple deaths for acute hepatitis B infection caused by poor practices with selfmonitoring blood glucose meters
- 8/87 assisted living facility residents affected; 6 deaths
- Sharing of lancets
- Lack of disinfection

CDC Morb Mortal Wkly Rep 2011;60:182. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6006a5.htm

Reducing the Risk of POCT-related Infections*


- Discard finger-stick devices after each patient
 - Use autodisabling devices
- Assign POC devices to a single patient whenever possible
- Clean and disinfect POCT devices after every use
- Use proper hand-hygiene

*Safe and helps meet accreditation standards

Clinical Laboratory News (39):1 FDA Patient Safety News. Preventing infections while monitoring glucose.

POC Testing and Safety: Staff

- Blood exposure and needlestick injuries are common
 - 23,908 injuries in 85 hospitals in 10 states (1995-2005)¹
- All healthcare staff involved in patient care are affected
 - Medical technologists, Physicians, Respiratory Therapists, and Nurses

¹Percutaneous Injuries before and after the Needlestick Safety and Prevention Act. N Engl J Med 2012; 366:670-67 ²Adapted from http://www.cdc.gov/niosh/stopsticks/sharpsinjuries.html

Exposure Causes and Consequences

• Causes:

- Unavailability of safety devices
- Lack of procedure for operator safety
- Procedures for safety not known or followed

• Consequences:

- Needle-stick injury
- Anxiety
- Infection
- Medical treatment

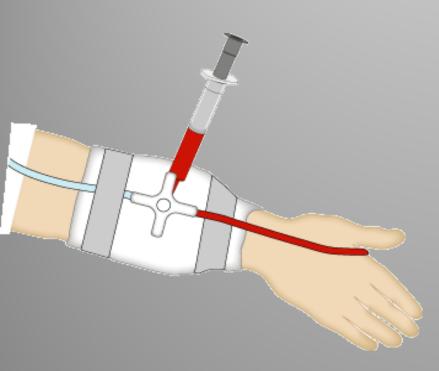
Risk Reduction

- To avoid risks:
 - Use PPE
 - Use a safety device that limits contact with patient blood
 - Use a protection device for the safe removal of needles
 - Ensure procedure for operator safety is established and followed

SAMPLING

Sampling

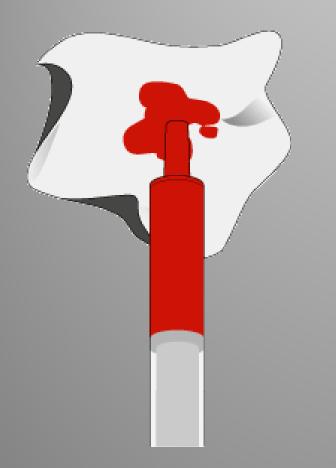
- Potential Issues:
 - Site selection
 - Site preparation
 - Collection


Sampling: Arterial Puncture

- Label the syringe with patient ID
- Choose Wisely
 - Note location and direction of flow for IV fluids relative to draw site
 - Confirm Arterial vs. Venous collection
 - Adequate flushing of ports or lines
- Expel any air bubbles immediately after sampling
- Mix the sample thoroughly immediately after sampling

Poll

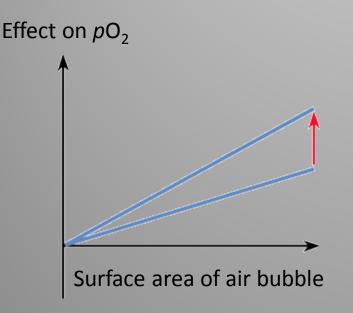
Contaminated		POLL QUESTION Accurate		
sample		sam	ple	
Type: pH: pCO2: pO2: HCO3: BE: sO2:	Arterial 6.923 12.4 49.3 4.5 -27.7 83.5	Type: pH: pCO2: pO2: HCO3: BE: sO2:	Arterial 6.975 8.2 187 <1.0 -28.2 98.9	If unrecognized, what are the potential consequences of this error?A). Unnecessary blood transfusionB). Excess potassium supplementationC). Confusion & concern for misidentificationD). Lack of appropriate insulin therapy
tHgb: K: Na: Glucose:	7.0 1.6 143 145	tHgb: K: Na: Glucose:	13.8 3.0 142 290	


Blood Gas Sampling

To avoid errors:

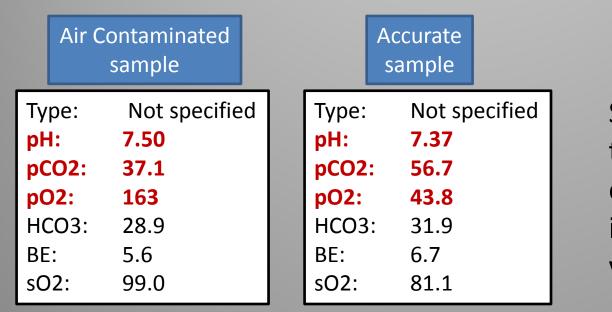
- Check the specific catheter package for the exact volume of dead space
- Rule of thumb: discard at least three times the dead space
 - (CLSI recommends 6x)
- Draw the blood gas sample with a dedicated blood gas syringe containing dry electrolyte-balanced heparin
- If in doubt, consider resampling

Air bubbles


 Any air bubbles in the sample must be expelled as soon as possible after the sample has been drawn

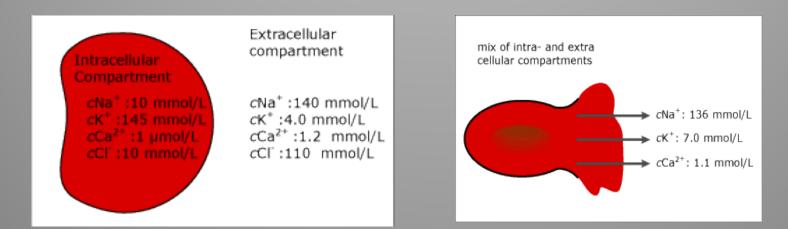
-before mixing the sample with heparin

 Even small air bubbles may seriously affect the pO₂ value of the sample


An air bubble whose relative volume is
 0.5 to 1.0 % of the blood in the syringe is
 a potential source of a significant error

Air bubble Effects depend on:

- Size of bubble
- Number of bubbles
- Initial oxygen status of sample
- Longer time
- Lower temperature
- Increased agitation

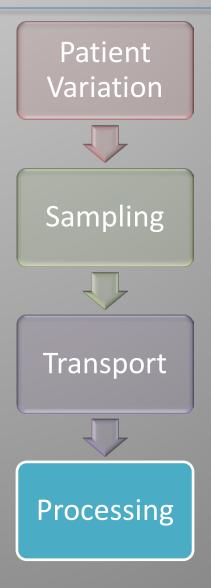

Effect of Air Bubbles

Sample was transferred between collection devices to inject low sample volume

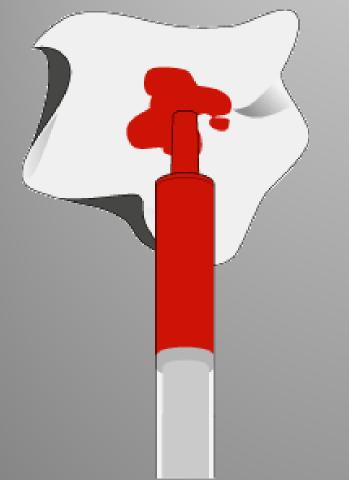
Hemolysis

- Hemolysis releases intracellular components
- Is not visible in a whole blood sample
 - All POC samples!

After 5 % hemolysis (~ 0.8 g/dL free hemoglobin)


Hemolysis

- Hemolysis of the sample can lead to:
 - Biased results
 - Possible misdiagnosis
 - Possible erroneous patient treatment/lack of treatment


• To avoid errors:

- Do not milk or massage the tissue during sampling
- Use self-filling syringes
- Use recommended procedures for mixing of samples

PROCESSING

Mixing and Clots

- Samples must be mixed *after* expelling air
- Before analyzing the sample, make a visual check of the blood
- Inspect for air bubbles
- Expel a few drops of blood from the syringe to inspect for clots

What Happens to the Instrument If a Clotted Sample is Analyzed?

POLL QUESTION

- A). No effect, ABG instruments have a hemolyzer
- B). Instrument will be unusable until clot is removed
- C). Electrolyte results will decrease
- D). Electrolyte results will increase

What Happens to the Instrument If a Clotted Sample is Analyzed?

Summary

• We're all in this together \rightarrow Help the patient!

• POC testing is not free from re-analytical errors

• POC Testing has unique challenges

• A bad sample is worse than no sample

Thank you and Questions?

Additional Resources

- Howanitz PJ, Howanitz JH. Quality control for the clinical laboratory. Clin Lab Med. 1983;3:541-551.
- Bonini P, Plebani M, Ceriotti F, et al. Errors in laboratory medicine. Clin Chem. 2002;48(5):691-698.
- Grenache DG and Parker CM. Integrated and automatic mixing of whole blood: evaluation of a novel blood gas analyzer. Clinica Chimica Acta, 2007
- CLSI. Procedures for the Collection of Arterial Blood Specimens; Approved Standard—Fourth Edition. CLSI document H11-A4. Wayne, PA: Clinical and Laboratory Standards Institute 2004
- <u>www.acutecaretesting.org</u>
- Percutaneous Injuries before and after the Needlestick Safety and Prevention Act. N Engl J Med 2012; 366:670-67
- A discard volumes arterial blood gas sampling. Critical Care Medicine: June 2003 - Volume 31 - Issue 6 - pp 1654-1658
- http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6006a5.htm

List of Potential Preanalytical Errors

- Missing or wrong patient/sample identification
- Use of the wrong type or amount of anticoagulant
 - dilution due to the use of liquid heparin
 - insufficient amount of heparin
 - binding of electrolytes to heparin
- Inadequate stabilization of the respiratory condition of the patient
- Inadequate removal of flush solution in a-lines prior to blood collection
- Mixture of venous and arterial blood during puncturing
- Air bubbles in the sample
- Insufficient mixing with heparin
- Incorrect storage
- Hemolysis of red blood cells
- Not visually inspecting the sample for clots
- Inadequate mixing of sample before analysis
- Failure to identify the sample upon analysis