

Improved Liver Cancer Surveillance with Serum Biomarkers AFP-L3 & DCP

Michael Volk, MD, MSc, AGAF

MEDICAL DIRECTOR, LIVER TRANSPLANTATION

CHIEF OF GASTROENTEROLOGY AND HEPATOLOGY

This webinar will:

- Review the epidemiology of HCC
- Summarize staging and curative treatment options
- Describe in detail the available biomarkers for early detection of HCC and their application

Learning Objectives

- Identify patients at risk for HCC
- Understand the importance of early detection of HCC
- Be able to describe and apply the available serum biomarkers for HCC

Pre-Questions

- How does efficacy vs effectiveness apply to HCC screening?
- What processes could laboratories implement to aid early diagnosis of HCC?
- What role do biomarkers play in determining response to treatment and/or recurrence of HCC?

HCC Epidemiology

- 3rd leading cause of cancer mortality worldwide
- 10th leading in US
- Almost exclusively presents in patients with chronic liver disease

HCC Epidemiology Worldwide Incidence of Hepatocellular Carcinoma

Incidence by State

HCC Epidemiology

Viral Hepatitis causes most HCC in the United States

Non-Alcoholic Fatty Liver Disease A rising cause of HCC

Epidemiology Summary

- HCC is more common than people realize
- Most HCC occurs in patients with underlying liver disease

Diagnosis and Management Overview

HCC Diagnosis Dual Blood Supply of Liver

- Vascular supply of HCC arises from the hepatic artery through neovascularization
- Triple phase contrast imaging is key

Yu JS, et al, Am J Roentgenol 1999

CardinalHealth

Triple Phase Imaging in HCC

LI-RADS

• Classification system for imaging diagnosis of HCC:

- o 1,2: not HCC
- o 3: indeterminate
- 4: suspicious
- o 5: diagnostic

Prognosis by BCLC Stage

BCLC Stage A

Early HCC (potential cure)

- Resection
 - o 1 tumor <5 cm, no portal hypertension</p>
- Ablation
 - o 1 tumor <3 cm</p>
- Transplant
 - Milan criteria: 1 tumor 2-5 cm, 3 <3 cm, no macrovascular invasion

Barcelona Management Strategy

Diagnosis and Management Summary

- Diagnosis of HCC is usually by triple-phase CT/MRI
 - Biopsy needed <10% of time
- Management is guided by stage
- Curative treatment depends on early diagnosis!

Screening and Surveillance

- Screening: Application of diagnostic tests, imaging or procedures in apparently healthy patients
- Surveillance: Serial application of blood-based tests, imaging or procedures in an atrisk patient population

Surveillance for HCC Reduces Mortality:

A Randomized Controlled Trial

Changes in Survival in Japan Since 100 **Inception of Surveillance** 90

Ikai I et al, Hepatol Res. (2010)

CardinalHealth

Pre-surveillance ——	Period	N	Median survival in months	% screened	Median age (IQR)	
	1966 – 1980	178	2.96 (2.4 – 3.4)	15.23 (n=151)	60 (54 – 67)	
	1981 – 1990	509	10.99 (8.8 – 13.2)	55.26 (n=418)	61 (55 – 68)	
	1991 – 2000	812	27.5 (25.8 – 31.1)	72.41 (n=812)	64 (59 – 70)	
Dr. P. Johnson, UK Cardinal Health. All Rights Reserved.	2001 – 2013	1105	52.2 (44.1 – 59.7)	76.80 (n=1103)	70 (63 – 76)	

Courtesy of Dr.

Guidelines for HCC Surveillance

Institutions	Guidelines		
AASLD American Association for the Study of Liver Diseases	US, every 6 months +/- AFP		
NCCN National Comprehensive Cancer Network	AFP + US every 6-12 months		
EASL European Association for the Study of the Liver	US, every 6 months		
APASL Asian-Pacific Association for the Study of the Liver	AFP + US, every 6 months		
JSH Japan Society of Hepatology	AFP + AFP-L3 + DCP + US, 3-4 months for very high risk 6 months for high risk (3-4 months after treatment, 2013)		

NOTE: Jan 2019 AASLD HCC surveillance guidance mentions AFP-L3% , DCP and GALAD as potential enhancements

Efficacy vs Effectiveness

- Variable completion rate
- Operator dependent: > half of the patients enrolled in surveillance programs receive a suboptimal quality ultrasound
 - o Excellent 13/154 (8.4%)
 - o Good 44/154 (28.6%)
 - o Fair 44/154 (28.6%)
 - Poor 53/154 (34.4%)

Bruix J et al. Hepatology. 2005;42:1208-36
 Bruix J et al. Hepatology. 2011;53:1020-2
 Bennett GL et al. AJR 2002;179:75–80.
 Joshi et al. Dig Dis Sci 2014 JUL 16, In Print

HCC Surveillance Biomarker:

Alpha-fetoprotein (AFP)

- AFP is a glycoprotein produced by:
 - Normal fetal hepatocytes
 - Normal regenerating hepatocytes
 - Most (not all HCCs)
 - Inflammation
- Low overall sensitivity and specificity for HCC
- Better performance when levels are exponentially rising (trending up) or fluctuating

Sherman M. Clin Liver Dis. 2011; 15: 323-334, Lee...Volk, et al. J Clin Gastro 2013;11:437

Alpha-fetoprotein-L3

AFP-L3%

- **AFP-L3** is a fucosylated isoform of AFP.
- **AFP-L3** binds to lectin Lens culinaris (lentil) agglutinin (LCA) which interacts with AFP-L3 but not AFP-L1 (majority of AFP).
- **AFP-L3%** is <u>FDA cleared</u> for HCC risk assessment.
- Measured as percentage of the overall AFP, not linked to absolute amount AFP-L3.

Sato Y, et al. N Engl J Med. 1993;328:1802-6. Makuuchi M, et al. Hepatol Res. 2008;38:37-51.

HCC Surveillance Biomarker

AFP-L3 Alpha-fetoprotein L3

AFP-L3%: expressed as a % of the ratio of AFP-L3 to total AFP

des-gamma-carboxy prothrombin: DCP

- Normal hepatocytes post-translationally carboxylate prothrombin precursors before secretion.
- **DCP** is a secreted non-carboxylated immature form of prothrombin.
 - o aka PIVKA-II (proteins induced by vitamin K absence or antagonist-II)
- Unconverted glutamic acid residues are due to an absence in many HCC cells of vit. K dependent carboxylase.
- **DCP** is <u>FDA cleared</u> for HCC risk assessment.

Liebman HA, et al. N Engl J Med. 1984;310:1427-31.

des-gamma-carboxy prothrombin: DCP

1ng/mL = 52.6 mAU/mL

A Statistical Model (GALAD):

A Combination of AFP, AFP-L3 & DCP with Age and Gender

The model predicts HCC presence in patients with chronic liver disease:

 $Z = -10.32 + 0.10 \times [Age] + 1.39 \times [Gender] + 2.43 \times \log[AFP] + 0.040 \times [AFP-L3] + 1.45 \times \log[DCP]$

From the calculated value of Z, the probability of HCC in a patient with chronic liver disease (ranging from 0 to 1) is calculated by:

GPr(HCC) = exp(Z)/(1+exp(Z))

Johnson et al, Cancer Epi Biom and Prev 2014

Added Value of The GALAD Model

Roles for Biomarkers

- Early detection (screening/surveillance)
- Prognosis
- Evaluate for recurrence

What role does the lab play?

- Implement the GALAD model
- Flag rising values
- Linkage to care

Questions?

