

The promise and *reality* of Next-Generation Sequencing (NGS)-based testing for diagnosis of Infectious Diseases

Huanyu Wang, PhD, D(ABMM) Sophonie Jean, PhD, D(ABMM)

June 30th, 2022

Disclosures

None

We do not endorse any commercial products discussed in the presentation

Learning Objectives

- Compare NGS-based testing to traditional nucleic acid amplification methods
- List advantages and limitations of NGS-based testing for diagnosis of infectious diseases
- Identify clinical scenarios in which NGS-based testing should be considered
- Identify strategies to improve appropriate use of NGS-based testing for infectious diseases

ation methods sis of

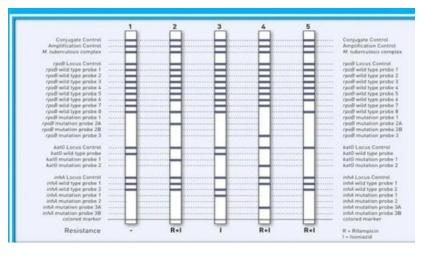
e considered sting for

Outline

- Overview of classical infectious disease (ID) testing
- Evolution of sequencing
 - o Sequencing technologies
 - Practical applications for ID
- Currently available NGS tests for ID

 Clinical performance of metagenomic NGS (mNGS)
 Clinical impact and utility of mNGS
 Diagnostic utilization criteria for mNGS
- Summary
- Future prospects




Diagnostic techniques in the microbiology laboratory

Classical microbiology

Microscopic examination ~1hr TAT Cultivation and identification: ~2-14 days

- Inflammation response
- Organisms
- Presumptive diagnosis
- Enzymology, biochemistry or molecular method
- Antibiotic susceptibility testing
- Definitive diagnosis

Diagnostic techniques in the microbiology laboratory

Classical microbiology

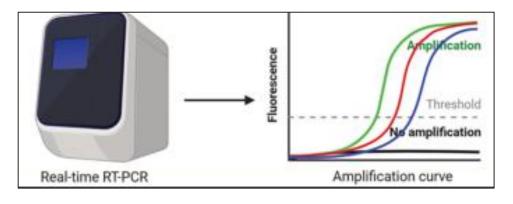
Microscopic examination ~1hr TAT

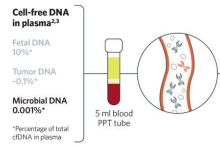
Cultivation and identification: ~2-14 days

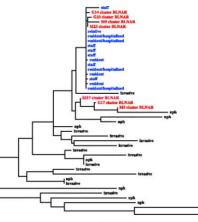
- Inflammation response
- Organisms
- Presumptive diagnosis

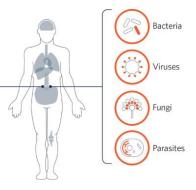
Enzymology, biochemistry or molecular method

- Antibiotic susceptibility testing
- Definitive diagnosis

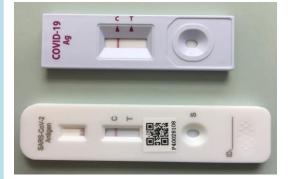

Molecular microbiology


Direct detect viral genome/genes ~1-3 day TAT


- DNA probes
- PCR
- DNA sequencing
- Definitive diagnosis


Epidemiology:

- Outbreak investigation
- Newly emerged pathogen



Diagnostic techniques in the microbiology laboratory

Classical microbiology		Molecular microbiology	Immunoserology
/licroscopic xamination ~1hr TAT	Cultivation and identification: ~2-14 days	Direct detect viral genome/genes ~1-3 day TAT	Antigen tests ~ 1hr TAT
Inflammation response Organisms Presumptive diagnosis	 Enzymology, biochemistry or molecular method Antibiotic susceptibility testing Definitive diagnosis 	 DNA probes PCR DNA sequencing Definitive diagnosis Epidemiology: Outbreak investigation Newly emerged pathogen 	Antibody tests ~7 days

Μ

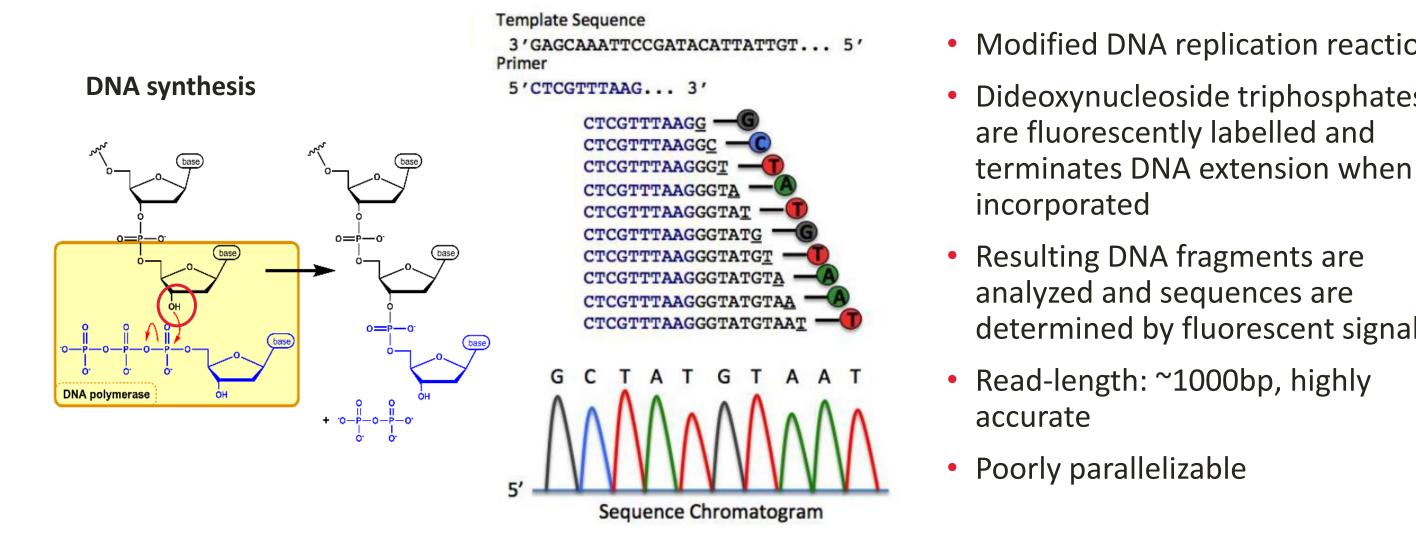
ех

What is Sequencing?

The process of determining the number and order of nucleotides (adenine, guanine, cytosine, thymine) that make up a molecule of DNA

- Identify a microorganism
- Analyze genetic mutations within genomes: antimicrobial resistant marker, virulent factors
- Investigate an outbreak
- Understand host response

It starts with Sanger sequencing


- 1953 Crick, Watson and Franklin discovered the structure of DNA
- 1977 Fredrick Sanger developed the first DNA sequencing method: chain termination method

Sanger sequencing dominates the field for three decades

Sanger sequencing: chain termination

Modified DNA replication reaction

Dideoxynucleoside triphosphates

determined by fluorescent signal

Application: Targeted sequencing

5'

3

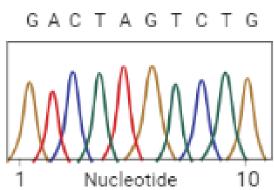
Т

Strengths

- Lowest error rate
- Long read length (~1000bp)

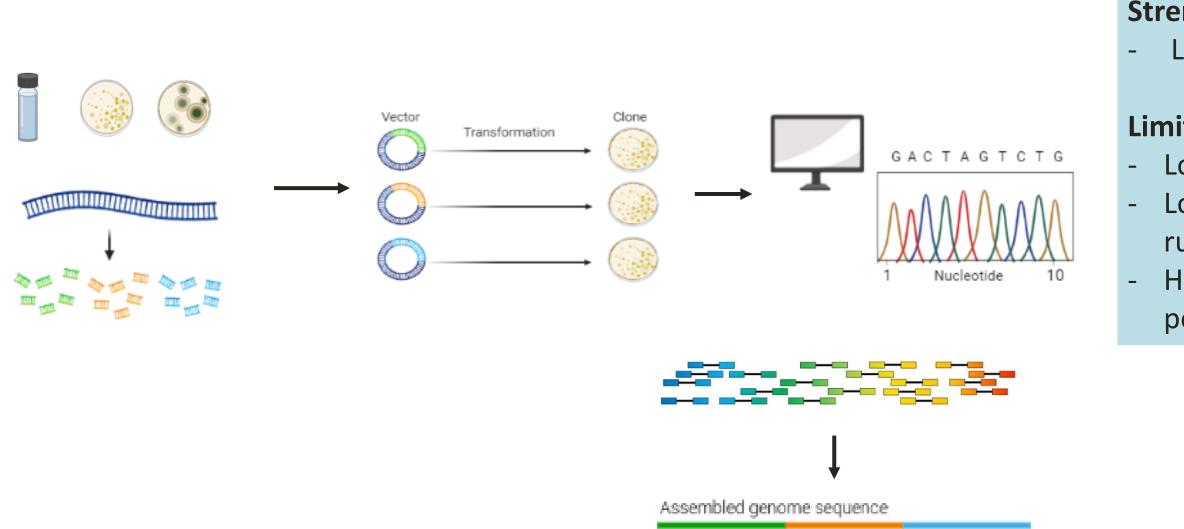
Limitations

- Long run time -
- Can't resolve mixed detections



- **16S ribosomal RNA**
- **HIV polymerase gene**

Virus


Bacterium

Fungus

Application: Whole genome sequencing

StrengthsLowest error rate

Limitations

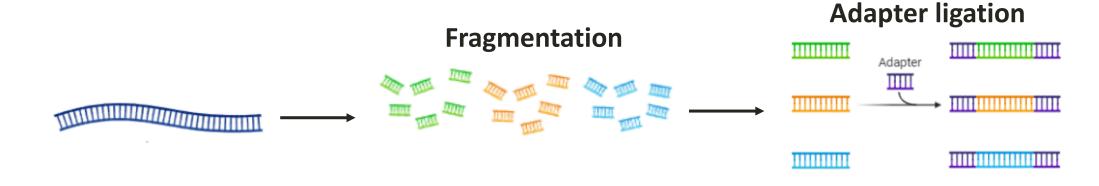
- Long run time
- Lower amount of data per

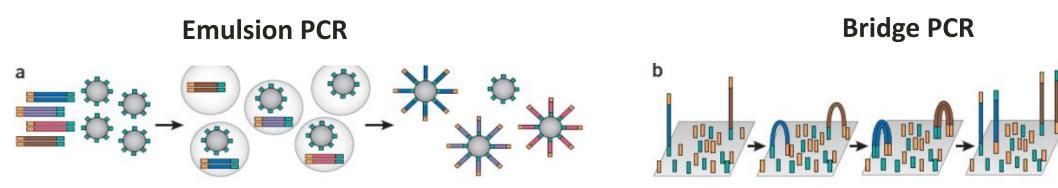
run

High case per base (\$0.5 per kilobase)

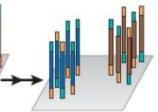
Next generation sequencing (NGS)

- 2005 The 454 system, first NGS platform to come to market
- 2007 Illumina acquired the company Solexa that developed sequencing by synthesis technology and graduate became the NGS platform market leader to this day
- 2007 SOLiD system introduces "sequencing by ligation" to the market
- 2011 Ion Torrent platform introduces "sequencing by synthesis" to the market

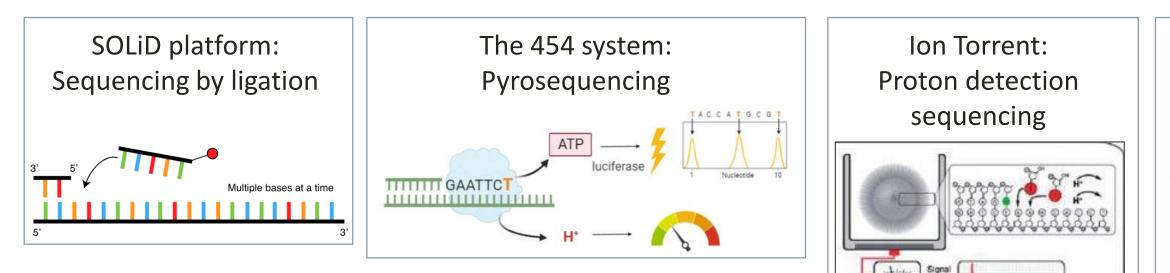


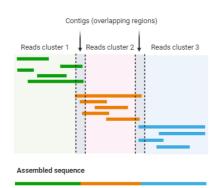


Next generation sequencing: massive parallel sequencing

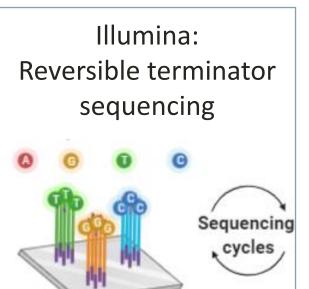

1. Library preparation

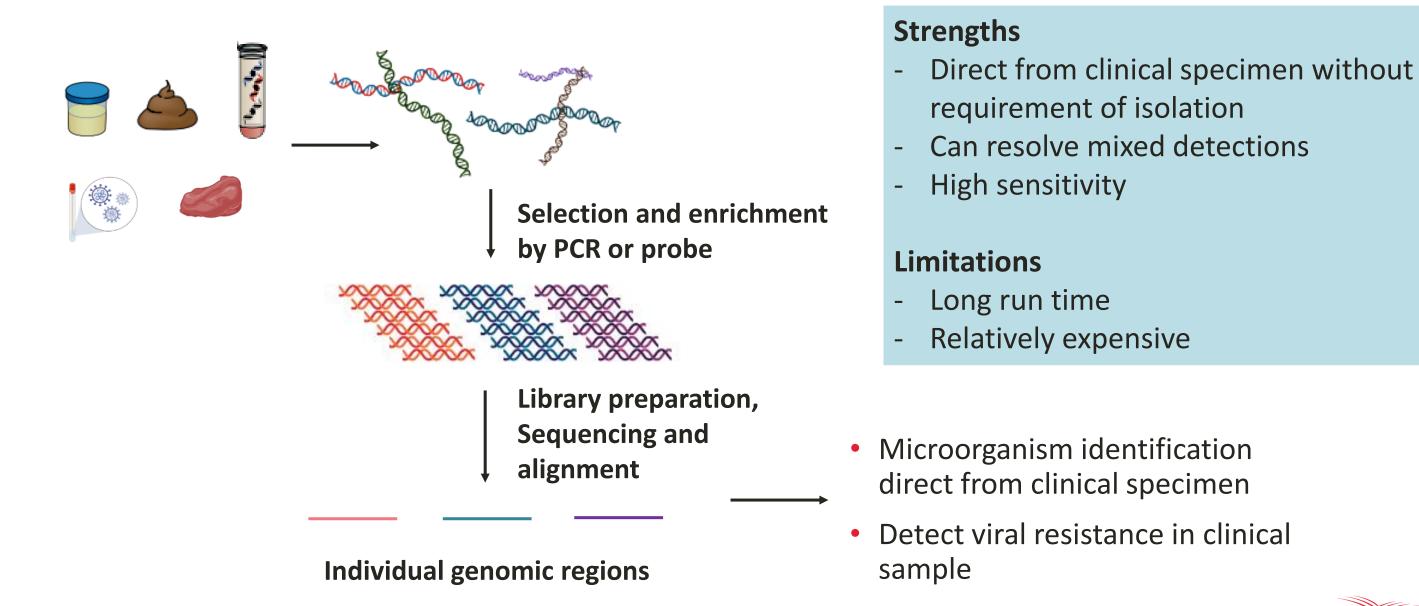
2. Clonal amplification


Leong IUS et al. *Medical Science* 2014 Jay Shendure & Hanlee Ji *Nature biotechnology* 2008

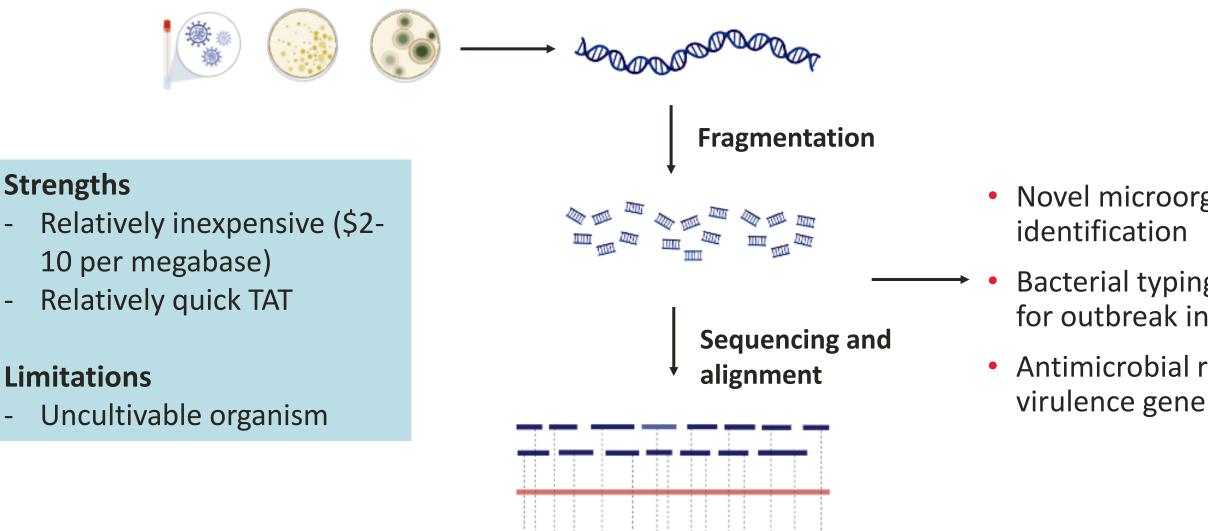

Next generation sequencing: massive parallel sequencing

3. Sequencing and data acquisition


4. Data analysis and assembly



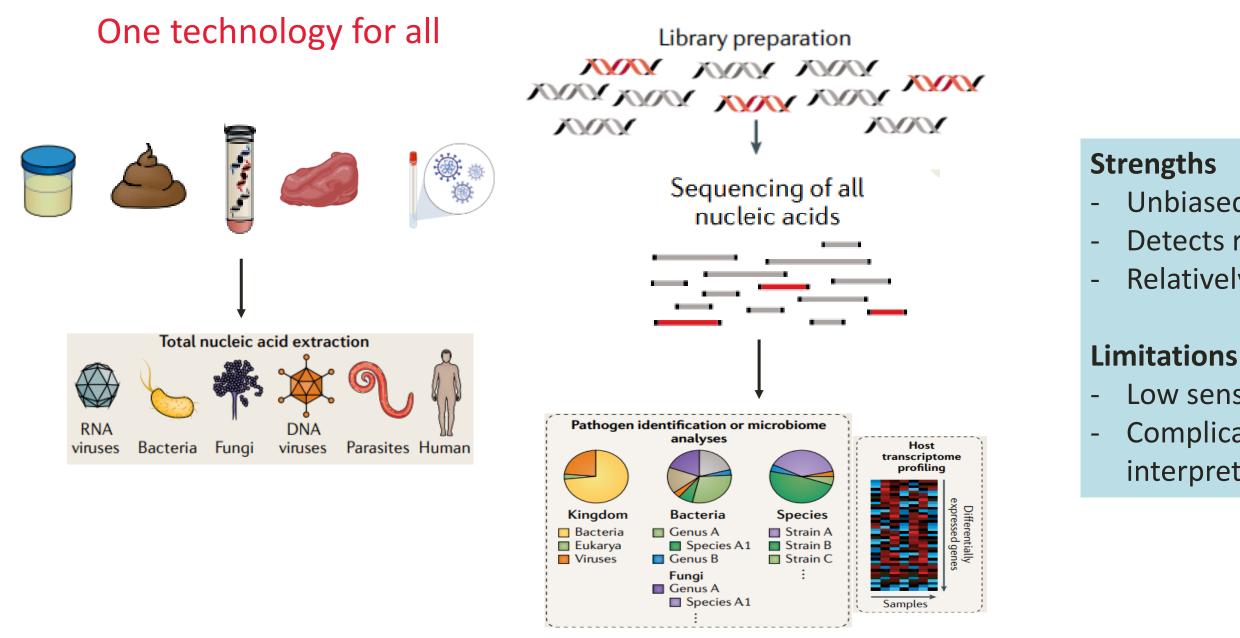
Golan D. and Medvedev P. Bioinformatics 2013



Application: Targeted NGS (tNGS)

Application: Whole genome NGS

Individual genome


Novel microorganism

Bacterial typing and viral typing for outbreak investigation

Antimicrobial resistance and

Application: Metagenomic NGS (mNGS)

Unbiased detection Detects rare pathogens Relatively quick turnaround

Low sensitivity **Complicated result** interpretation

Third generation sequencing

- 2011 Pacific Biosciences introduces single molecular sequencing technology
- 2012 Oxford Nanopore technologies launches portable system for RNA and DNA sequencing

Single molecule sequencing

MODODD Motor protein Mean Signal (pA) Time (seconds)

- Single molecules are sequenced. No requirement of DNA amplification
- Long reads: 10kb, allows for the resolution of large structural features
- Real-time base-calling and data assessment

equenced. No nplification vs for the ctural features and data

	Real-time PCR	Sanger sequencing	tNGS
Prior knowledge of the target	Yes	Yes* bacteria vs. fungus	Yes* bacteria vs. fungus

No

	Real-time PCR	Sanger sequencing	tNGS	mNGS
Prior knowledge of the target	Yes	Yes* bacteria vs. fungus	Yes* bacteria vs. fungus	Νο
Enrichment of the target	Yes	Yes	Yes	Νο

	Real-time PCR	Sanger sequencing	tNGS
Prior knowledge of the target	Yes	Yes* bacteria vs. fungus	Yes* bacteria vs. fungus
Enrichment of the target	Yes	Yes	Yes
Availability Turnaround time	Most clinical labs <8h	Most clinical labs <8h	Large academic/Reference labs 1-7 days

mNGS

No

No

Large academic/Reference labs 1-7 days

	Real-time PCR	Sanger sequencing	tNGS
Prior knowledge of the target	Yes	Yes* bacteria vs. fungus	Yes* bacteria vs. fungus
Enrichment of the target	Yes	Yes	Yes
Availability Turnaround time	Most clinical labs <8h	Most clinical labs <8h	Large academic/Reference labs 1-7 days
Advantage	 Quick TAT High sensitivity	Low error rateLong read	 Highly sensitive Detect a group of pathogen simultaneously
Example of clinical application	SA/MRSA PCR	16S rRNA sequencing of unknown isolate	Universal PCR from clinical sample

mNGS

No

No

Large academic/Reference labs 1-7 days

Unbiased pathogen
 detection

mNGS Pathogen detection from clinical sample

Available NGS tests for Infectious Disease

FDA-approved

Sentosa SQ HIV Genotyping Assay

 Targeted NGS technology to detect HIV drug resistance

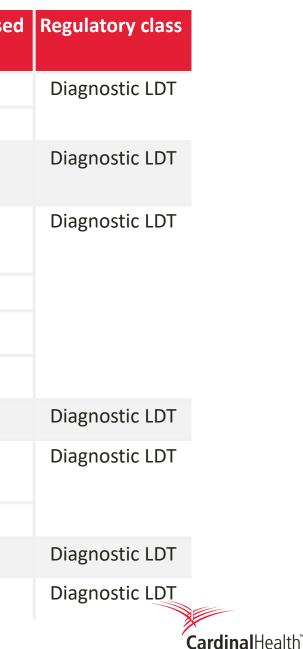
Emergency Use Authorization (EUA)

- Clear DX SARS-CoV-2 Test
- Illumina COVIDSeq Test
- SARS-CoV-2 NGS Assay
- UCLA SwabSeq COVID-19 Diagnostic Platform
- Helix COVID-19 NGS Test

Available NGS tests for Infectious Disease

CLIA-certified lab offerings

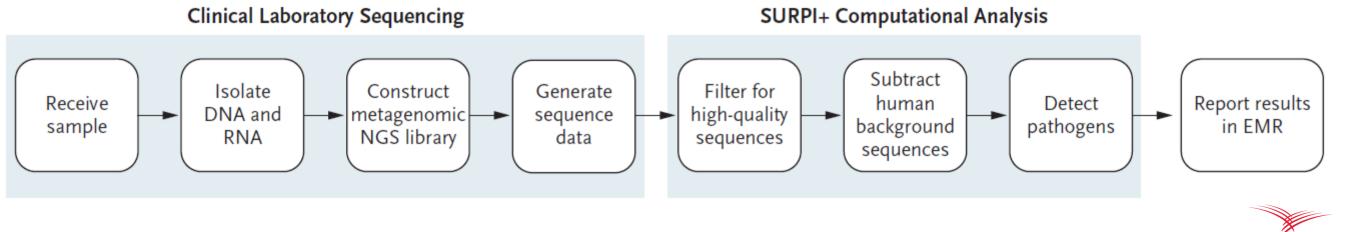
	Test Name	Sample type	Targeted	Unbiase
ARUP	Bacterial strain typing	Bacterial isolate		Х
	HIV drug resistance	Blood- plasma	Х	
Day Zero Diagnostics	epiXact strain typing	Bacterial isolate	Х	
Mayo Clinic Laboratory	Broad range bacterial sequencing	Normally sterile body fluid/tissue	Х	
	Bacterial strain typing	Bacterial isolate		Х
	CMV drug resistance	Blood-plasma	Х	
	MTBC drug resistance	Bacterial isolate	Х	
MicroGenDX	qPCR + NGS DNA ^{DX}	Varies	Х	
UW Medicine Molecular Microbiology	Broad range PCR + NGS (bacteria, fungi, AFB)	Tissue, non-blood body fluids	Х	
	Bacterial strain typing by WGS	Bacterial isolate		Х



´CardinalHealth[™]

Available NGS tests for Infectious Disease

CLIA-certified lab offerings


	Test Name	Sample type	Targeted	Unbiase
ARUP	Bacterial strain typing	Bacterial isolate		Х
	HIV drug resistance	Blood- plasma	Х	
Day Zero Diagnostics	epiXact strain typing	Bacterial isolate	Х	
Mayo Clinic Laboratory	Broad range bacterial sequencing	Normally sterile body fluid/tissue	Х	
	Bacterial strain typing	Bacterial isolate		Х
	CMV drug resistance	Blood-plasma	Х	
	MTBC drug resistance	Bacterial isolate	Х	
MicroGenDX	qPCR + NGS DNA ^{DX}	Varies	Х	
UW Medicine Molecular Microbiology	Broad range PCR + NGS (bacteria, fungi, AFB)	Tissue, non-blood body fluids	Х	
	Bacterial strain typing by WGS	Bacterial isolate		Х
UCSF	mNGS Pathogen Dx	CSF		X
Karius	The Karius Test	Blood- plasma		X

Performance of UCSF mNGS Pathogen Dx for diagnosis of infectious meningitis and encephalitis

Study Design

- Prospective, multi-center study investigating usefulness of mNGS of CSF for diagnosis of meningitis and encephalitis
- Inclusion criteria: idiopathic meningitis, encephalitis, or myelitis without diagnosis at enrollment
- **Reference:** composite reference standard of conventional testing and orthogonal confirmatory testing of mNGS positive only samples

C Protocol for Metagenomic NGS Assay

Characteristics of study patients

Table 1. Demographic and Clinical Characteristics of the 204 Patients.	*		
Characteristic	Value		
Age			
Mean — yr	39.6		
Distribution — no. (%)		Immunocompromised — no. (%)	83 (40.7)
0–2 yr	5 (2.5)	HIV-1	21 (10.3)
3–12 yr	25 (12.3)	Solid-organ transplant	14 (6.9)
13–18 yr	16 (7.8)	Bone marrow transplant	13 (6.4)
19–25 yr	17 (8.3)	Chemotherapy	14 (6.9)
26–40 yr	40 (19.6)	Immunosuppression for non-neoplastic condition	14 (6.9)
41–60 yr	53 (26.0)	Congenital condition	3 (1.5)
>60 yr	48 (23.5)	Other	4 (2.0)
Male sex — no. (%)	114 (55.9)	Existing CNS hardware — no. (%)‡	27 (13.2)
Syndrome — no. (%)		ICU admission — no. (%)	99 (48.5)
Meningitis alone	70 (34.3)	Death within 30 days — no. (%)	23 (11.3)
Encephalitis with or without meningitis	130 (63.7)	Mean Karnofsky performance-status score at time of discharge§	64.6
Myelitis with or without meningitis	4 (2.0)	Mean length of stay (range) — days	
Exacerbation of chronic condition — no. (%)†	28 (13.7)	In hospital	27.9 (1–246)
nstitution — no. (%)		In ICU¶	17.8 (1–71)
University of California, San Francisco	110 (53.9)	Percentage of hospitalization time spent in ICU¶	32.2
University of California, Los Angeles	36 (17.6)	Median no. of days after hospital admission that CSF was collected for	3.0 (0–219)
University of California, Davis	31 (15.2)	metagenomic NGS (range) — days	
Children's Hospital Los Angeles	8 (3.9)		
Zuckerberg San Francisco General Hospital	8 (3.9)		
Children's Hospital Colorado	6 (2.9)		
St. Jude Children's Research Hospital	3 (1.5)		
Children's National Medical Center	2 (1.0)		

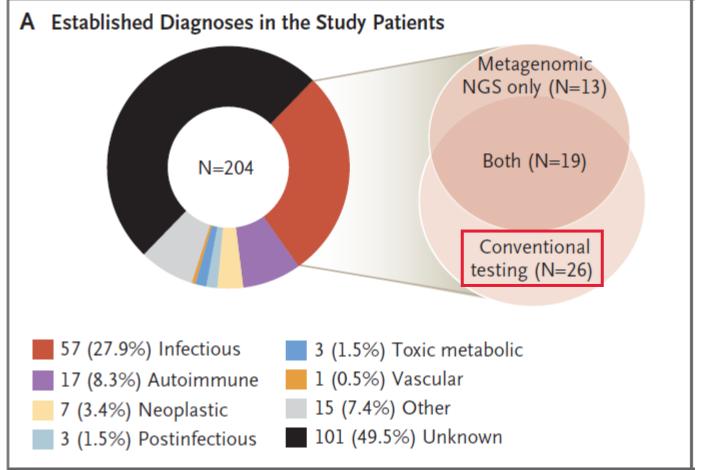
© 2022 Cardinal Health. All Rights Reserved. 29

mNGS detections in confirmed CNS infections

mNGS only detections—22.8%, 13/57

- Candida tropicalis ۲
- EBV •
- Echovirus 6 ٠
- Echovirus 30
- Enterovirus aerogenes •
- Enterococcus faecalis ۲
- Hepatitis E Virus •
- MW polyomavirus

- •
- •
- Virus
- •


•

Neisseira meningitidis Nocardia farcinica Saint Louis Encephalitis

Streptococcus agalactiae Streptococcus mitis

mNGS missed CNS infections

mNGS missed detections-45.6%, 26/57

Serology

- Baylisascaris procyonis
- Dengue virus
- Treponema pallidum (x2)
- WNV (x4)
- VZV (x3)

Non-CSF sample

- Aspergillus sp
- Bacillus cereu
- Fusobacteriu
- Mucor sp.
- Polymicrobial empyema

е	Low-level pathogen		
p.	•	CMV	
US	•	Cryptococcus	
ı <i>m</i> sp.		neoformans	

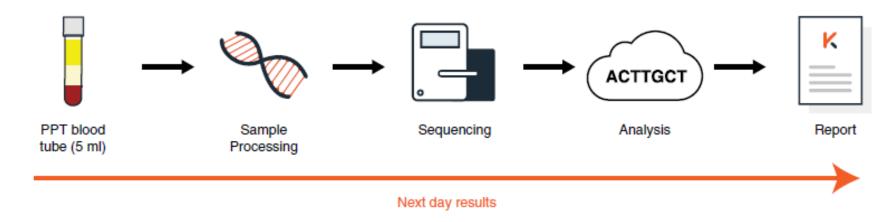
- Fusobacterium sp.
- HSV-2
- Mycobacterium bovis
- Mycobacterium tuberculosis
- Cutibacterium acnes
- Staphylococcus aureus

Strengths and Limitations of mNGS of CSF for diagnosis of meningitis and encephalitis

Strengths

- High specificity of CSF mNGS detections
- Identifies organisms not previously considered

Limitations


- CSF mNGS does not replace conventional testing
 - Infections normally detected by serology often missed by mNGS (WNV, VZV, neurosyphillis)
- High levels of host DNA in CSF can interfere with mNGS pathogen detection
- Low-levels of pathogen can reduce sensitivity of CSF mNGS

Analytical and clinical validation of a microbial cellfree DNA sequencing test for infectious disease

Cell-free DNA sequencing

- Fragments of genomic DNA from pathogens causing infections at various locations can be detected in purified plasma cell free DNA (cfDNA)
- Promise of non-invasive sampling for detection of deep-seated infections within rapid TAT, even with pre-treatment
- mNGS facilitates detection of >1,000 pathogens

The Karius test workflow

Clinical validation of a microbial cell-free DNA sequencing (Karius) test for infectious disease

Study Design

- Prospective clinical trial to determine etiology of sepsis using infectious disease diagnostic sequencing assay
- Inclusion criteria: Adult patients, presenting to Stanford University Hospital Emergency Department with 2/4 sepsis criteria
- **Reference:** 1) initial blood culture 2) all microbiological testing 3) composite reference standard with clinical adjudication of Karius pathogen only
- **Primary outcome measure:** Accuracy of sequencing assay in diagnosing etiology of sepsis within 7 days

Characteristics of study patients

Characteristic	Data (N=350)
Age, median (range), years	54 (18-97)
Sex, n (%)	
Male	179 (51.1)
Female	171 (48.9)
Race, n (%)	
White	197 (56.3)
Asian	74 (21.1)
Black or African American	15 (4.3)
Native Hawaiian or other Pacific Islander	7 (2)
American Indian or Alaskan Native	1 (0.3)
Not reported	55 (15.7)
Medical Comorbidities, n (%)	
≥ 1 concurrent chronic medical condition	227 (64.9)
Hypertension	97 (27.7)
Diabetes mellitus	61 (17.4)
Chronic heart disease	54 (15.4)
Hyperlipidemia	53 (15.1)
Lenght of Hospital Stay	
Mean length of stay in days, n (range)	4.7 (1-117)
Median length of stay in days, n (IQR)	3 (1-5)
Hospitalization Survival Status, n (%)	
Discharged	346 (98.9)
Died	4 (1.1)
Antimicrobial treatment ¹ within 2 weeks of sepsis ale	rt 97 (27.7)

Blauwkamp TA & Thair S, et al., 2019. Nature Microbiology 4:663–674. DOI: 10.1038/s41564-018-0349-6

Clinical performance of the Karius test

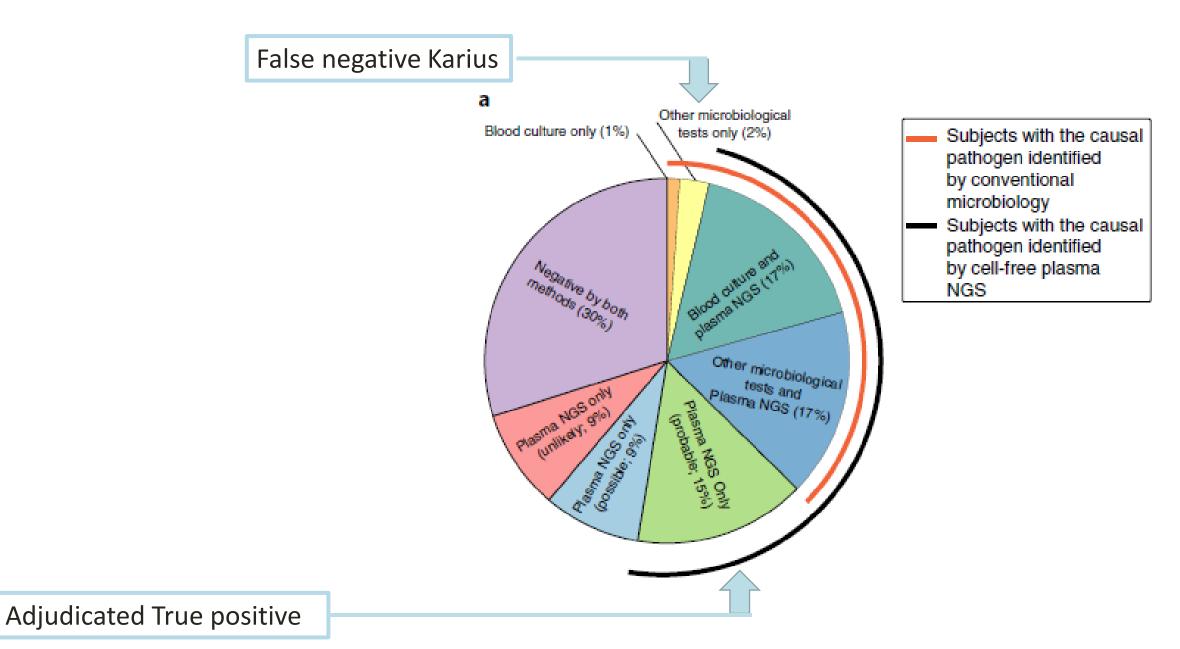
Compared to blood culture—PPA: 93.7% (84.5-98.2), NPA: 40% (34.3-45.9)

	Blood culture positive	Blood culture negative
Karius positive	59	171
Karius negative	4	114

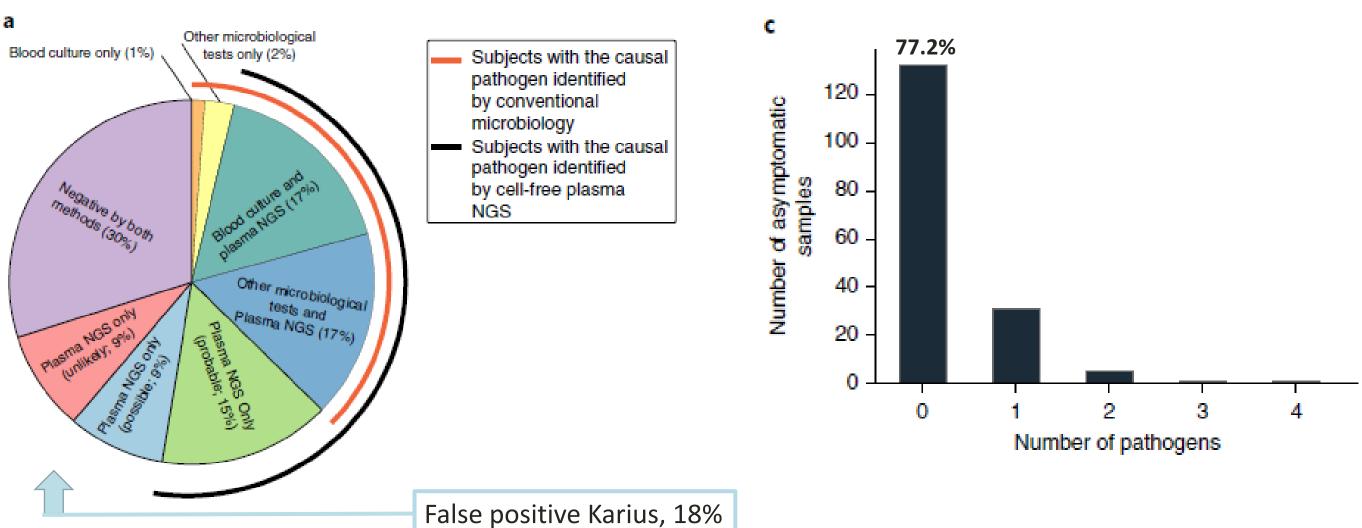
Compared to all microbiology testing (SOC)—PPA: 84.8% (77.6-90.5), NPA: 48.2% (44.3-55.0)

	SOC positive	SOC negative
Karius positive	112	112
Karius negative	20	104

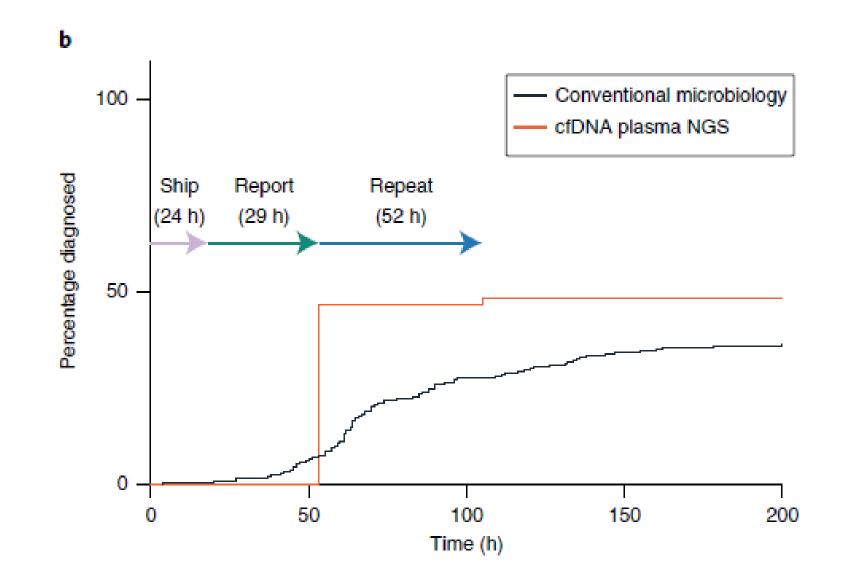
Compared to composite reference standard (CRS) — PPA: 92.9% (88.1-96.1), NPA: 62.7% (54.8-70.0)


	CRS positive	CRS negative
Karius positive	169	62
Karius negative	13	104

Blauwkamp TA & Thair S, et al., 2019. Nature Microbiology 4:663–674. DOI: 10.1038/s41564-018-0349-6 © 2022 Cardinal Health. All Rights Reserved 36



Clinical performance of the Karius test


Clinical performance of the Karius test

22.8% Karius detection in asymptomatic donors

Karius test results are available within 3 days

Strengths and Limitations of the Karius test

Strengths

- Rapid turnaround time
- High concordance with initial blood culture results

Limitations

- Low specificity (Karius only detections)
- Multiple detections can confound interpretation
- Susceptibility information not provided

Clinical impact and utility of mNGS in routine practice

- Single center retrospective review of 80 cases submitted for CSF mNGS
 - 15% (12/80) positive result rate
 - 58% (7/12) interpreted as inconsistent with clinical presentation
 - 4% (2/53) altered patient management

- Multicenter retrospective review of the clinical impact of 82 consecutive cases submitted for plasma cell-free mNGS (Karius)
 - o 61% (50/82) positive result rate
 - o 7.3% (6/82) positive clinical impact
 - 3.7% (3/82) negative clinical impact
 - 32.9% (27/82) diagnosis pre-established from conventional testing

Clinical Infectious Diseases

MAJOR ARTICLE

Rodino KG, et al. 2020. Journal of Clinical Microbiology https://doi.org/10.1128/JCM.01729-20. Hogan CA, et al. 2020. Clin Infect Dis https://doi.org/10.1093/cid/ciaa035.

Clinical Impact of Metagenomic Next-Generation Sequencing of Plasma Cell-Free DNA for the Diagnosis of Infectious Diseases: A Multicenter Retrospective Cohort Study

Catherine A. Hogan, 123 Shangxin Yang, ⁴ Omai B. Garner, ⁴ Daniel A. Green, ⁵ Carlos A. Gomez, ⁶ Jennifer Dien Bard, ⁷ Benjamin A. Pinsky, ^{1,2,2,0} and Niaz Banaei

Department of Pathology, Stanford University School of Medicine, Stanford, California, USA, ²Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA, ³Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA, ⁴Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA, ⁵Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA, ⁸Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, Utah, USA, Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, California, USA, and ^eDivision of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford Iniversity School of Medicine, Stanford, California, USA

Clinical impact and utility of Karius in pediatric patients

- Single-center retrospective review of 59 cases submitted for Karius
 - 49% (29/59) positive result rate
 - 55% (28/51) clinically-relevant organisms
 - o 14% impacted clinical management
 - o 50% true negative agreement
- Single-center retrospective review of 60 cases submitted for Karius
 - 63% (38/60) positive result rate
 - 26% (6/23) change in antimicrobial therapy
 - 73% of cases with positive agreement reported conventional testing earlier than Karius

Identifying Pathogens: a Retrospective Review of Test Utilization in a Large Children's Hospital

Denver T. Niles,^a Dona S. S. Wijetunge,^b Debra L. Palazzi,^a Ila R. Singh,^b ^DPaula A. Revell^{b,}

^aInfectious Disease Section, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas, USA ^bDepartment of Pathology and Immunology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas, USA Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas, USA

Should everyone get mNGS sequencing?

NO!

Which patients benefit most from testing?

- Confirmed infectious process
- Previously negative SOC testing ٠
 - Pre-treatment with antimicrobials
 - Deep-seated, difficult to sample infections
- Immunocompromised with high risk of infection •

If mNGS is indicated:

- Also consider targeted NGS at affected sites
- Interpret results with caution!

Recommendations for test utilization

- Appropriate use criteria are actively being evaluated
- Restricted access to test ordering

 Require Infectious Diseases consult/approval
 Microbiology lab director approval
- Interpretation with experts
 - ONGS review boards
 - OMultidisciplinary team
 - Infectious disease consultants
 - Microbiology lab directors
 - Testing lab

In summary

• NGS technology:

• Sequencing continues to rapidly evolve • More accurate, affordable and timely

 Advantages of Infectious Diseases NGS Dx: ODoes not require prior suspicion Oldentify pathogens not detected by routine testing • Generate large scale data in shorter turn around time

Limitations of Infectious Diseases NGS Dx:

• Not a standalone test

• False positive detections of unclear significance

• Still a reference lab test- requires specialized equipment and expertise, relatively expensive

The future of NGS for infectious disease

- As technology improves, cost and time for NGS analysis will continue to decline
- More NGS based testing in molecular microbiology
 - Only available large academic medical centers
 - Combined computer science and microbiology expertise
- Pathway to FDA-clearance/approval
- Studies establishing best practices for interpretation and utilization

Contains Nonbinding Recommendations

Draft - Not for Implementation

Infectious Disease Next Generation Sequencing Based Diagnostic Devices: Microbial Identification and Detection of Antimicrobial Resistance and Virulence Markers

Draft Guidance for Industry and Food and Drug Administration Staff

DRAFT GUIDANCE

This draft guidance document is being distributed for comment purposes only.

Document issued on: May 13, 2016

You should submit comments and suggestions regarding this draft document within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to http://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. Identify all comments with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions about this document, contact Heike Sichtig Ph.D., Division of Microbiology Devices at 301-796-4574 or by email at Heike.Sichtig@fda.hhs.gov.

https://www.fda.gov/regulatory-information/search-fda-guidancedocuments/infectious-disease-next-generation-sequencing-baseddiagnostic-devices-microbial-identification-and

