

Twists, Turns and Accelerations: The Effect of Pneumatic Tube Transport on Clinical Laboratory Testing

Christina Pierre, Ph.D., DABCC, FAACC

Clinical Chemist- Penn Medicine Lancaster General Hospital

Disclosures

Christina Pierre, Ph.D.

• Nothing to disclose

Learning Objectives

At the conclusion of this presentation, learners will be able to:

 Describe the structure of a pneumatic tube system (PTS) as it pertains to the environmental conditions that specimens experience during transport

Learning Objectives

At the conclusion of this presentation, learners will be able to:

- Describe the structure of a pneumatic tube system (PTS) as it pertains to the environmental conditions that specimens experience during transport
- 2. Discuss the impact of pneumatic tube transport on specimen integrity and mitigation strategies

Learning Objectives

At the conclusion of this presentation, learners will be able to:

- Describe the structure of a pneumatic tube system (PTS) as it pertains to the environmental conditions that specimens experience during transport
- 2. Discuss the impact of pneumatic tube transport on specimen integrity and mitigation strategies
- 3. Design and implement a pneumatic tube system validation plan

- Blowers
 - Create pressure and vacuums

- Blowers
 - Create pressure and vacuums
- Tubes

- Blowers
 - Create pressure and vacuums
- Tubes
- Stations

- Blowers
 - Create pressure and vacuums
- Tubes
- Stations
- Diverters
 - Allow tubes to change direction

- Blowers
 - Create pressure and vacuums
- Tubes
- Stations
- Diverters
 - Allow tubes to change direction
- Carriers

- Blowers
 - Create pressure and vacuums
- Tubes
- Stations
- Diverters
 - Allow tubes to change direction
- Carriers
- System software

Garrett R Mullins, James H Harrison, David E Bruns, Smartphones Can Monitor Medical Center Pneumatic Tube Systems, Clinical Chemistry, Volume 62, Issue 6, 1 June 2016, Pages 891–893, <u>https://doi.org/10.1373/clinchem.2016.257063</u>

Pneumatic Tube Systems are Highly Customized

- Tube length
- Tube diameter
- Number of vertical drops
- Number of twists
- Number of turns
- Turning radii
- Air pressure
- Sending speed

Tube and carrier materials and design

Specimen Environment During PTS Transport

- Vibration/agitation
- Rapid and large acceleration changes or shock forces (m/s² or g)
- Pressure changes
- Temperature extremes poorly insulated areas of PTS

Specimen Environment During PTS Transport

- Vibration/agitation
- Rapid and large acceleration changes or shock forces (m/s² or g)
- Pressure changes
- Temperature extremes poorly insulated areas of PTS

Specimen Environment During PTS Transport

- Vibration/agitation
- Rapid and large acceleration changes or shock forces (m/s² or g)
- Pressure changes
- Temperature extremes poorly insulated areas of PTS

Area Under the Curve as a Measure of Cumulative Accelerations

PTS-induced hemolysis

PTS-induced hemolysis

Hemolysis Index

Flag	Frequency of Hemolysis flags					
+++++						0
++++					15	
+++				10		
++			24	3		
+		30	8			
N	359	26				
	< 50	50-99	100-199	200-	300-	≥ 500
				299	499	
	Hemoglobin Concentration (mg/dL)					

Which Analytes are Affected?

Test	Hemolysis Th
Alkaline phosphatase	≥ 4+
Alanine amino transferase	≥ 4+
Amylase	≥ 3+
Aspartate amino transferase	≥ 1+
Total cholesterol	≥ 4+
Creatine Kinase	≥ 4+
Direct bilirubin	≥ 1+
Iron	≥1+
Gamma glutamyl transferase	≥ 4+
Potassium	≥ 1+
Lactate Dehydrogenase	≥ 1+
Magnesium	≥ 2+
Phosphorous	≥ 4+
Tobramycin	≥ 4+
Albumin	≥ 4+
Vancomycin	≥ 4+

Number and Magnitude of Shock Forces Correlates with Degree of Hemolysis

Garrett R Mullins, James H Harrison, David E Bruns, Smartphones Can Monitor Medical Center Pneumatic Tube Systems, Clinical Chemistry, Volume 62, Issue 6, 1 June 2016, Pages 891–893, <u>https://doi.org/10.1373/clinchem.2016.257063</u>

Number and Magnitude of Shock Forces Correlates with Degree of Hemolysis

Garrett R Mullins, James H Harrison, David E Bruns, Smartphones Can Monitor Medical Center Pneumatic Tube Systems, Clinical Chemistry, Volume 62, Issue 6, 1 June 2016, Pages 891–893, <u>https://doi.org/10.1373/clinchem.2016.257063</u>

Specimen Hemolysis Correlates with PTS Transport Speed

Specimen Hemolysis Correlates with PTS Transport Speed

How Do Low g-Forces During PTS Transport Cause Hemolysis?

Thomas Streichert, Benjamin Otto, Claudia Schnabel, Gerhard Nordholt, Munif Haddad, Mario Maric, Astrid Petersmann, Roman Jung, Christoph Wagener, Determination of Hemolysis Thresholds by the Use of Data Loggers in Pneumatic Tube Systems, Clinical Chemistry, Volume 57, Issue 10, 1 October 2011, Pages 1390–1397

This Photo by Unknown Author is licensed under CC BY-SA

How Do Low g-Forces During PTS Transport Cause Hemolysis?

This Photo by Unknown Author is licensed under CC BY-SA

Air Bubbles May Cause PTS-induced Hemolysis

Mullins GR, Bruns DE. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems. Clin Chim Acta. 2017 Oct;473:9-13.

Air Bubbles May Cause PTS-induced Hemolysis

Mullins GR, Bruns DE. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems. Clin Chim Acta. 2017 Oct;473:9-13.

Air Bubbles May Cause PTS-induced Hemolysis

Mullins GR, Bruns DE. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems. Clin Chim Acta. 2017 Oct;473:9-13.

Garrett R Mullins, James H Harrison, David E Bruns, Smartphones Can Monitor Medical Center Pneumatic Tube Systems, Clinical Chemistry, Volume 62, Issue 6, 1 June 2016, Pages 891–893, https://doi.org/10.1373/clinchem.2016.257063

b а С Heparinized vs Clotted Blood Heparinized Clotted Control p = 0.03O 80 p = 0.090 ange 60 Change from 140 from 120 Control (IU/L) 100 20 H-Index Clotted Clotted Heparinized Heparinized LD H-Index

> Garrett R Mullins, James H Harrison, David E Bruns, Smartphones Can Monitor Medical Center Pneumatic Tube Systems, Clinical Chemistry, Volume 62, Issue 6, 1 June 2016, Pages 891–893, <u>https://doi.org/10.1373/clinchem.2016.257063</u>

Koch CD, Vera MA, El-Khoury JM. Rapid serum clot tubes reduce haemolysis due to pneumatic tube transport. J Clin Pathol. 2022 Sep;75(9):643-645.

Koch CD, Vera MA, El-Khoury JM. Rapid serum clot tubes reduce haemolysis due to pneumatic tube transport. J Clin Pathol. 2022 Sep;75(9):643-645.

Full blood tubes are less prone to hemolysis

Mullins GR, Bruns DE. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems. Clin Chim Acta. 2017 Oct;473:9-13.

b

Full blood tubes are less prone to hemolysis

Mullins GR, Bruns DE. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems. Clin Chim Acta. 2017 Oct;473:9-13.

pO₂ is Impacted by PTS Transport

Collinson PO, John CM, Gaze DC, Ferrigan LF, Cramp DG. Changes in blood gas samples produced by a pneumatic tube system. J Clin Pathol. 2002 Feb;55(2):105-7

Carabini LM, Nouriel J, Milian RD, Glogovsky ER, McCarthy RJ, Handler TG, Ault ML. The Clinical Significance of Patient Specimen Transport Modality: Pneumatic Tube System Impact on Blood Gas Analytes. Respir Care. 2016 Oct;61(10):1311-5.

pO₂ is Impacted by PTS Transport

Transport in pressure-sealed containers may mitigate PTS-induced changes in pO_2

Collinson PO, John CM, Gaze DC, Ferrigan LF, Cramp DG. Changes in blood gas samples produced by a pneumatic tube system. J Clin Pathol. 2002 Feb;55(2):105-7

Carabini LM, Nouriel J, Milian RD, Glogovsky ER, McCarthy RJ, Handler TG, Ault ML. The Clinical Significance of Patient Specimen Transport Modality: Pneumatic Tube System Impact on Blood Gas Analytes. Respir Care. 2016 Oct;61(10):1311-5.

Hemolysis Impacts Blood Gas Analytes

Table 3. Variation of blood gas parameters in mechanically hemolyzed specimens.

Parameter	Desirable specifications (%)	Non-hemolyzed blood	Hemolyzed blood	p Value	
pH	±1.0	7.29 ± 0.01	7.33±0.01	<.01	
pO ₂ , mmHg	±1.8	49.2 ± 4.7	55.3 ± 4.7	<.01	
pCO ₂ , mm Hg	±1.8	52.6 ± 1.4	45.1 ± 1.4	<.01	_
HCO3 , mmol/L	±1.6	24.6±0.5	23.2 ± 0.5	<.01	
Na ⁺ , mmol/L	±0.2	139.6±0.8	137.4 ± 0.6	<.01	
K ⁺ , mmol/L	±1.8	4.4 ± 0.1	5.2 ± 0.8	<.01	
Cl ⁻ , mmol/L	±0.5	99.7 ± 0.6	99.9 ± 0.6	.08	
Ca ²⁺ , mmol/L	±0.6	1.3 ± 0.02	1.2 ± 0.02	<.01	
Anion gap, mmol/L	±3.5	18.9 ± 0.4	19.6 ± 0.4	<.01	
Glucose, mmol/L	±1.8	5.9 ± 0.3	5.8 ± 0.3	<.01	
Lactate, mmol/L	±8.0	3.95 ± 0.31	4.31 ± 0.31	<.01	
Hemoglobin, g/L	±1.8	10.4 ± 0.4	10.4 ± 0.5	.68	
Hct, %	±1.7	33.2 ± 1.2	33.6±1.3	.06	

Casati M, Intra J, Rossi W, Giacobone C, Brivio R. Hemolysis and blood gas analysis: it's time for a change! Scand J Clin Lab Invest. 2022 Apr;82(2):138-142

Bias

0.2 % (0.0 % to 1.2 %) 12.4 % (-9.7 % to 80.9 %) -14.3 % (-26.7 % to -5.3 %) -3.2 % (-11.7 % to -2.2 %) -1.6 % (-17.2 % to 6.2 %) 18.2 % (-0.5 % to 117 %) 0.2 % (-1.8 % to 2.1 %) -7.7 % (-13.7 % to -0.4 %) 3.7 % (-14.2 % to 22.3 %) -0.6 % (-16.3 % to 3.3 %) -1.5 % (-2.8 % to 66.7 %) 15.6 % (-19.5 % to 37.1 %) 13.5 % (-22.3 % to 65.7 %)

Robot carriers may be an alternative to PTS-transport

- Already in use in some health systems for various tasks including transport of specimens to lab
 - o Temperature control
 - Agitation control
 - o Rapid
 - o Reduces need for hand delivery

 No clear regulatory guidance on how to validate PTS for specimens destined for clinical laboratory analyses

AABB GUIDE TO PNEUMATIC TUBE DELIVERY SYSTEMS: VALIDATION AND USE TO TRANSPORT BLOOD COMPONENTS - DIGITAL

Pneumatic tube delivery systems are an integral component of the contemporary day-to-day functioning of many blood banks and transfusion medicine services. In recent years, reliance on their speed has increased and the software used to operate them has become highly sophisticated. Adequate staffing at receiving stations is an increasing concern, as is the overall system workload. This *Guide to Pneumatic Tube Delivery Systems* details the "nuts and bolts" of system planning, operation, and maintenance for facilities considering a pneumatic delivery system, those needing to expand an existing system, or those wanting to increase efficiency of operations. Highlights include:

https://www.aabb.org/aabb-store/product/aabb-guide-to-pneumatic-tube-delivery-systems-validation-and-use-to-transport-blood-components---digital-15175121

Clinical Chemistry 65:5 694-702 (2019)

Parameters for Validating a Hospital Pneumatic **Tube System**

Christopher W. Farnsworth,¹ Daniel M. Webber,¹ James A. Krekeler,¹ Melissa M. Budelier,¹ Nancy L. Bartlett,² and Ann M. Gronowski^{1*}

Accelerometers Are Better Suited for Validation Studies

Accelerometers Are Better Suited for Validation Studies

Different Transport Routes Must Be Evaluated

Different Transport Routes Must Be Evaluated

Different Transport Routes Must Be Evaluated

Precision Must Be Evaluated

	Ir	Intraday variation			Interday variation		
	Mean	SD	CV, %	Mean	SD	CV,	
Route 5							
Elapsed time (s)	316	31	10	310	56	18	
AUC	359	19	5	472	134	28	
Number of g-forces >3	272	10	4	248	88	35	
Number of g-forces >5	192	7	4	183	57	31	
Number of g-forces >10	91	4	4	96	34	35	
Number of g-forces >15	44	6	14	44	17	39	
Route 8							
Elapsed time (s)	249	14	6	245	15	(
AUC	339	9	3	340	47	14	
Number of g-forces >3	235	15	6	214	9	4	
Number of g-forces >5	186	10	5	172	11	(
Number of g-forces >10	109	5	5	98	13	13	
Number of g-forces >15	51	4	8	45	12	27	

Additional Considerations

• Acceptability criteria based on changes in LDH, K⁺ and H-index relative to hand-transported specimens.

> Farnsworth CW, Webber DM, Krekeler JA, Budelier MM, Bartlett NL, Gronowski AM. Parameters for Validating a Hospital Pneumatic Tube System. Clin Chem. 2019 May;65(5):694-702.

Kanias T, Sinchar D, Osei-Hwedieh D, Baust JJ, Jordan A, Zimring JC, Waterman HR, de Wolski KS, Acker JP, Gladwin MT. Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease. Transfusion. 2016 Oct;56(10):2571-2583.

Additional Considerations

- Acceptability criteria based on changes in LDH, K⁺ and H-index relative to hand-transported specimens.
- Specimens from male patients are more prone to hemolysis
 - Mechanism unknown
 - May be testosterone mediated

Farnsworth CW, Webber DM, Krekeler JA, Budelier MM, Bartlett NL, Gronowski AM. Parameters for Validating a Hospital Pneumatic Tube System. Clin Chem. 2019 May;65(5):694-702.

Kanias T, Sinchar D, Osei-Hwedieh D, Baust JJ, Jordan A, Zimring JC, Waterman HR, de Wolski KS, Acker JP, Gladwin MT. Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease. Transfusion. 2016 Oct;56(10):2571-2583.

Additional Considerations

- Acceptability criteria based on changes in LDH, K⁺ and H-index relative to hand-transported specimens.
- Specimens from male patients are more prone to hemolysis
 - o Mechanism unknown
 - May be testosterone mediated
- Special patient populations:
 - o Patients with anemia
 - Patients with high blood cell counts
 - Critically ill patients

Farnsworth CW, Webber DM, Krekeler JA, Budelier MM, Bartlett NL, Gronowski AM. Parameters for Validating a Hospital Pneumatic Tube System. Clin Chem. 2019 May;65(5):694-702.

Kanias T, Sinchar D, Osei-Hwedieh D, Baust JJ, Jordan A, Zimring JC, Waterman HR, de Wolski KS, Acker JP, Gladwin MT. Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease. Transfusion. 2016 Oct;56(10):2571-2583.

What about temperature?

AABB Recommendation

- Assess temperature changes that blood components may be exposed to during transport
 - Temperature strips
 - Digital thermometers
 - Temperature loggers
 - Built in temperature sensors

Packed red blood cells experience temperature variations during PTS-transport

Parameter	PTS ^a	CRR ^a	p-value
Temperature variation (°C)	8.3 (5.3 – 10.7)	4.1 (1.5 – 8.5)	0,085
Ht variation	0.6 (-1.05 – 0.95)	0 (-0.8 – 0.6)	0.336
Hb variation	0 (-0.15 – 0.2)	-0.1 (-0.03 – 0.1)	0.369
Supernatant Potassium variation	1.6 (0.1 – 2.45)	0.1 (-1.85 – 2.25)	0.345
AST variation	2 (1 – 7.5)	3 (1 – 7.5)	0.796
LDH variation	58 (17.5 – 149.5)	108 (29.75 - 157)	0.666
Variation in Hemolysis Index	37 (5.5 – 73.5)	51 (27 – 132.5)	0.554
Variation of Visual Hemolysis	169 (80.5 – 415.75)	142.5 (81.5 - 321)	0.412
Free Hb variation	0.03 (0.005 – 0.0925)	0.01(0-0.1)	0.114

Garcia LO, Speransa DMR, Rodrigues CB, Benites RM, Garcia MT, Sekine L, Franz JPM. Validation of blood components transport through a pneumatic tube system. Hematol Transfus Cell Ther. 2021 Nov 16:S2531-1379(21)01305-5.

Packed red blood cells experience temperature variations during PTS-transport

Parameter	PTS ^a	CRR ^a	p-value
Temperature variation (°C)	8.3 (5.3 – 10.7)	4.1 (1.5 – 8.5)	0,085
Ht variation	0.6 (-1.05 – 0.95)	0 (-0.8 – 0.6)	0.336
Hb variation	0 (-0.15 – 0.2)	-0.1 (-0.03 – 0.1)	0.369
Supernatant Potassium variation	1.6 (0.1 – 2.45)	0.1 (-1.85 – 2.25)	0.345
AST variation	2 (1 – 7.5)	3 (1 – 7.5)	0.796
LDH variation	58 (17.5 – 149.5)	108 (29.75 - 157)	0.666
Variation in Hemolysis Index	37 (5.5 – 73.5)	51 (27 – 132.5)	0.554
Variation of Visual Hemolysis	169 (80.5 – 415.75)	142.5 (81.5 - 321)	0.412
Free Hb variation	0.03 (0.005 – 0.0925)	0.01(0-0.1)	0.114

Garcia LO, Speransa DMR, Rodrigues CB, Benites RM, Garcia MT, Sekine L, Franz JPM. Validation of blood components transport through a pneumatic tube system. Hematol Transfus Cell Ther. 2021 Nov 16:S2531-1379(21)01305-5.

- During PTS transport, specimens experience:
 - Vibration/agitation
 - Rapid and large acceleration changes
 - o Shock forces
 - Pressure changes
 - Temperature extremes

- During PTS transport, specimens experience:
 - Vibration/agitation
 - Rapid and large acceleration changes
 - o Shock forces
 - Pressure changes
 - o Temperature extremes
- Hemolysis can occur during PTS transport and correlates with the number and magnitude of shock forces, duration of transport, and transport speed

- During PTS transport, specimens experience:
 - Vibration/agitation
 - Rapid and large acceleration changes
 - o Shock forces
 - Pressure changes
 - o Temperature extremes
- Hemolysis can occur during PTS transport and correlates with the number and magnitude of shock forces, duration of transport, and transport speed
- Hemolysis can be mitigated by proper tube filling, use of clotted specimens, and reduced transport speeds

- During PTS transport, specimens experience:
 - Vibration/agitation
 - Rapid and large acceleration changes
 - o Shock forces
 - Pressure changes
 - o Temperature extremes
- Hemolysis can occur during PTS transport and correlates with the number and magnitude of shock forces, duration of transport, and transport speed
- Hemolysis can be mitigated by proper tube filling, use of clotted specimens, and reduced transport speeds
- Validation of pneumatic tube systems should be performed using 3-axis accelerometers, assessing different transport routes and precision
 - Male specimens should be included
 - o Special patient populations must be considered

