

Automated Susceptibility Testing to Optimize Patient Outcomes

Jerod Nagel, PharmD, BCIDP Clinical Pharmacist, Infectious Diseases Clinical Assistant Professor Director Infectious Diseases Residency University of Michigan Health System

Learning Objectives

- Describe the impact of effective stewardship practices on mortality and how collaboration between the microbiology lab and stewardship team can improve metrics
- Review the impact of effective stewardship practices in cases of sepsis and septic shock
- Demonstrate the need for new therapeutics to accompany accurate diagnostics

- Antibiotic stewardship and microbiology
- Priorities in selecting automated systems
- Considerations in susceptibility testing and reporting

Movement Away from Fee-for-Service Healthcare Models

- Increased focus on quality performance measures and patient outcomes
 - Linked to hospital reimbursement
- Tracking and public reporting of hospital data
 - National Quality Forum (NQF)
 - Medicare and Medicaid Services (CMS)
 - Agency for Healthcare Research and Quality (AHRQ)
 - The Joint Commission (TJC)
 - The Leapfrog Group

Daily Patient-Care Activities

Drug-Based Stewardship

- Prior approval
- Criteria restricted

Disease-Based Stewardship

- HIV
- Candidemia
- S. aureus bacteremia
- C. difficile colitis

Micro-Based Stewardship

- Culture Review
- Multi-drug resistant organisms

Daily Patient-Care Activities

Drug-Based Stewardship

• Prior approval

Criteria restricted

Disease-Based Stewardship

- HIV
- Candidemia
- S. aureus bacteremia
- C. difficile colitis

Micro-Based Stewardship

- Culture Review
- Multi-drug resistant organisms

Quality Improvement Activities

- Implement methods to improve management of infectious diseases and antimicrobials
- Improve publicly reported quality performance measures and outcomes measures
- Provide input for various hospital committees

Rapid Organism Identification plus Real-Time Stewardship Team Review & Intervention

Control Group

Traditional Organism ID

No Real-time Intervention

Intervention Group

Rapid Organism ID via MALDI-TOF PLUS Real-time Stewardship Intervention Rapid Organism Identification plus Real-Time Stewardship Team Review & Intervention

Control GroupIntervention GroupTraditional Organism IDRapid Organism IDNo Real-time InterventionPLUSReal-time StewardshipIntervention

Implemented an automatic relay system to send 3 real-time alerts to an antimicrobial stewardship pager from 0700-2300:

- Positive Gram stain
- •Organism identification
- •Susceptibility results

Clinical Microbiology Timeline

Timing an Characterization of Interventions

Outcomes: 30-day All-cause Mortality

Secondary Outcomes

Therapy-Related Outcome	Pre-Interv (n=256)	Interv (n=245)	P-value
Time to Effective Therapy (hrs)	30.06	20.35	0.021
Time to Optimal Therapy (hrs)	90.34	47.25	< 0.001

	Pre-Interv	Interv	
Clinical Outcome	(n=256)	(n=245)	P-value
Time to clinical response (days)	3.97	2.5	< 0.001
Time to microbiological cure (days)	3.32	3.27	0.928
Length of hospitalization (days)	21.03	16.73	0.054
Length of ICU stay (days)	16.58	9.15	0.012
Recurrence of same BSI (%)	15 (5.9)	5 (2.0)	0.038
30-day Readmission with same BSI (%)	9 (3.5)	4 (1.6)	0.262

Total Cost per Bacteremic Episode

Reduction in Total Hospital Costs with Rapid Diagnostic Testing plus Real-time Culture Review

Cost Savings per Bacteremia Episode

Study	RDT/pathogen(s)	Study Design	Outcomes
Forrest,	PNA-FISH	Pre/post-intervention:	ID of <i>C. albicans</i> 3 days earlier (9.5h vs 44h),
2006	Candida spp.	RDT + AST	↓ antifungal costs by \$1,978/patient
Forrest,	PNA-FISH	Pre/post-intervention:	↓ mortality (45% vs 35%),
2008	Enterococcus spp.	RDT + AST	↓ time to appropriate abx (1.3 vs 3.1 days)
Ly,	PNA-FISH	RDT and	\checkmark mortality (17% vs 8%), \checkmark inappropriate abx use by 2.5 days*, trend towards \checkmark LOS and cost
2008	<i>S. aureus</i> vs GPCs	pre/post AST	
Carver,	RT-PCR	mecA gene reporting	 ↓ time to optimal abx (64.7h vs 39.9h), ↓ duration of <i>S. aureus</i> BSI
2008	<i>mecA</i> (MRSA)	and pre/post AST	
Wong,	rPCR	Pre/post intervention:	↓ LOS (21.5d vs 15.3d)
2010	<i>S. aureus</i>	RDT + AST	
Perez,	MALDI-TOF	Pre/post intervention:	↓ LOS (11.9d vs 9.3d),
2013	GNRs	RDT + AST	Trend towards ↓mortality (10.7 vs 5.6%)
Huang,	MALDI-TOF	Pre/post intervention:	 ↓ 30d mortality (20.3 vs 12.7%), ↓ LOS (21 vs 16.7d)
2013	All Pathogens	RDT + AST	

Study	RDT/pathogen(s)	Study Design	Outcomes
Forrest,	PNA-FISH	Pre/post-intervention:	ID of <i>C. albicans</i> 3 days earlier (9.5h vs 44h),
2006	Candida spp.	RDT + AST	↓ antifungal costs by \$1,978/patient
Forrest,	PNA-FISH	Pre/post-intervention:	↓ mortality (45% vs 35%),
2008	Enterococcus spp.	RDT + AST	↓ time to appropriate abx (1.3 vs 3.1 days)
Ly,	PNA-FISH	RDT and	↓ mortality (17% vs 8%), ↓ nappropriate abx use by
2008	<i>S. aureus</i> vs GPCs	pre/post AST	2.5 days*, trend towards ↓ LOS and cost
Carver,	RT-PCR	mecA gene reporting	 ↓ time to optimal abx (64.7h vs 39.9h), ↓ duration of <i>S. aureus</i> BSI
2008	mecA (MRSA)	and pre/post AST	
Wong,	rPCR	Pre/post intervention:	↓ LOS (21.5d vs 15.3d)
2010	S. aureus	RDT + AST	
Perez,	MALDI-TOF	Pre/post intervention:	↓ LOS (11.9d vs 9.3d).
2013	GNRs	RDT + AST	Trend toward: ↓mortality (10.7 vs 5.6%)
Huang,	MALDI-TOF	Pre/post intervention:	 ↓ 30d mortality (20.3 vs 12.7%), ↓ LOS (21 vs 16.7d)
2013	All Pathogens	RDT + AST	

Study	RDT/pathogen(s)	Study Design	Outcomes
Forrest,	PNA-FISH	Pre/post-intervention:	ID of <i>C. albicans</i> 3 days earlier (9.5h vs 44h),
2006	Candida spp.	RDT + AST	↓ antifungal costs by \$1,978/patient
Forrest,	PNA-FISH	Pre/post-intervention:	↓ mortality (45% vs 35%), ↓ time to appropriate abx (1.3 vs 3.1 days)
2008	Enterococcus spp.	RDT + AST	
Ly,	PNA-FISH	RDT and	↓ mortality (17% vs 8%), ↓ nappropriate abx use by
2008	<i>S. aureus</i> vs GPCs	pre/post AST	2.5 days*, trend towards ↓ LOS and cost
Carver,	RT-PCR	mecA gene reporting	 ↓ time to optimal abx (64.7h vs 39.9h), ↓ duration of <i>S. aureus</i> BSI
2008	mecA (MRSA)	and pre/post AST	
Wong,	rPCR	Pre/post intervention:	↓ LOS (21.5d vs 15.3d)
2010	S. aureus	RDT + AST	
Perez,	MALDI-TOF	Pre/post intervention:	↓ LOS (11.9d vs 9.3d).
2013	GNRs	RDT + AST	Trend toward: ↓mortanty (10.7 vs 5.6%)
Huang,	MALDI-TOF	Pre/post intervention:	↓ 30d mortality (20.3 vs 12.7%), ↓ LOS (21 vs 16.7d)
2013	All Pathogens	RDT + AST	

Sepsis Management

Action	Severe Sepsis		Septic Shock	
	3-hr	6-hr	3-hr	6-hr
Initiate Antibiotics	Yes		Yes	
Blood culture	Yes		Yes	
Initial Lactate	Yes		Yes	
Repeat lactate		Yes*	Yes	
Crystalloid fluids			Yes	
Vasopressor				Yes*
Repeat volume status				Yes*

- Outcome measurements:
 - Mortality
 - Length of hospitalization

Compliance with Sepsis Bundle Elements

Chest 2022; 161(2): 392-406

Impact of Delayed Effective Antibiotic Therapy in Septic Shock

Kumar A, et al. Crit Care Med 2006; 34:1589–1596

Case: Initial Patient Presentation

- 68 year-old male presents to the ED with respiratory distress, productive cough, and chest pain
 - PE: Rapid, labored and shallow breathing. Rhales in lower lung
 - PMH: Severe COPD, Dementia, CKD, Malnutrition.
 - SH: Recently hospitalized 3 weeks ago for COPD exacerbation, and currently resides in an extended care facility

• Diagnosed with pneumonia

- Intubate and admitted to the ICU
- Blood and sputum cultures are ordered
- Cefepime, vancomycin and tobramycin are started

Case: Microbiology Results

Case: Microbiology Results

Case: Next Steps

• Additional susceptibility requests:

- Ceftolozane/tazobactam
- Ceftazidime/avibactam
- Meropenem/vaborbactam
- Imipenem/relabactam
- Cefiderocol

Case: Next Steps

• Additional susceptibility requests:

- Ceftolozane/tazobactam
- Ceftazidime/avibactam
- Meropenem/vaborbactam
- Imipenem/relabactam
- Cefiderocol

How much longer would it take to get these susceptibilities?

Efficacy of Ceftolozane/tazobactam Treatment for MDRO *Pseudomonas* Infections

Prospective observational study

- 205 patients; majority with pneumonia
- Median APACHE II = 19 and Charlson Comorbidity Index = 4
- 19% mortality, and 73% clinical and microbiologic success
- Only 1 factors was associated with survival, microbiologic success and clinical success:

Initiation of ceftolozane/tazobactam within 4 days of culture		
Survival	5.55 OR (95% CI, 2.14-14.4)	
Clinical Success	2.93 OR (95% CI, 1.4-6.1)	
Microbiologic Success	2.59 OR (95% CI, 1.24-5.38)	

• Microbiology Workgroup Goals

- Determine appropriate technologies to optimize patient care
- Provide information to help understand results and facilitate necessary action
- Provide timely and accurate pathogen identification and susceptibility
- Perform targeted screening to detect colonization of MDRO pathogens

Advances in Clinical Microbiology

Manual susceptibility testing

• Kirby-Bauer, E-test, microbroth, etc.

Automated ID and susceptibility systems

• Vitek[™], Microscan[™], Sensititre[™], etc.

Mass spectrometry

• MALDI-TOF

Nucleic acid hybridization

• PNA-FISH[™]

Nucleic acid amplification

• Real-time PCR, Multiplex arrays

Magnetic resonance imaging

• T2 Biosystems ™

Next generation whole genome sequencing

• Karius [™]

Priorities in Selecting Technology for Organism Identification and Susceptibility Testing

- Produce accurate results
- Optimize workflow
- Enhance susceptibility testing options to help facilitate antibiotic de-escalation AND escalation
- Reduce redundancy
- Meet infection control needs

Produce Accurate Results and Optimize Workflow

- University of Michigan Microbiology history:
 - Completely manual system for ID and AST (pre-2007)
 - Implemented automated system for ID and AST (starting 2007)
 - MALDI-TOF for ID (2011), then Verigene (2016)

• Concerns and limitations of automated system for AST

- Limited accuracy of specific bug-drug combinations, which forced us to use alternate methods (microbroth, E-test, KB)
- AST cards were limited in customizable dilution options, and limited space to report susceptibility for narrow-spectrum agents
- Timeliness of changes to the cards with new CLSI breakpoints
- Timeliness of adding new antibiotics to AST cards

Determining Antibiotics for Susceptibility Reporting

- Unfortunately, its very difficult to test all antibiotics likely to be prescribed. Prioritization of which antibiotics are tested is usually necessary
- Sensititre[™] offers standardized and customizable panels, including the ability to select antibiotic dilutions
- From a stewardship standpoint, "narrow spectrum" antibiotics will not be utilized unless susceptibility results available
- Also need to balance the need to quickly obtain susceptibility results for multi-drug resistant organisms

Stewardship Considerations for Antibiotic Susceptibility Reporting

- Minimize unnecessary prescribing of antibiotics more likely to promote resistance or cause collateral damage
 - Carbapenems, 3rd generation cephs, FQs, linezolid, daptomycin, clindamycin, vancomycin
- Provide options for narrow spectrum antibiotic options for de-escalation for common infections
 - UTI, SSTI, Pneumonia and Intra-abdominal infections account for over 90% infections causing hospitalization
 - De-escalation to amoxicillin, penicillin, amoxicillin/clavulanate, 1st/2nd gen oral cephalosporins, tetracyclines, fosfomycin, etc
 - Need to provide sufficient dilutions to accommodate urine vs. nonurine isolates and all organisms with different CLSI breakpoints

Stewardship Considerations for Antibiotic Susceptibility Reporting

- Provide timely and optimal therapy for multi-drug resistant organisms, or therapy that facilitates OPAT (which is commonly with newer antibiotics)
 - Minimize the need for reflex testing, when organisms is resistant to everything on the standard panel
 - Sufficient delays in testing additional antibiotics can impact patient care
 - Senititre[™] frequently offers newer antibiotic on susceptibility panels sooner than competition

Case #2: Patient Presentation

- 85 year-old female presents to primary physician clinic with urinary symptoms: dysuria, frequency and urgency
 - Her history is significant for recurrent UTIs, CKD, and hypertension. She's currently receiving ciprofloxacin as prophylaxis and has a sulfa allergy

<i>E. coli</i> > 100K CFU/mL	MIC	Interpretation
Ampicillin	>256	R
Nitrofurantoin	8	S
Trimethoprim/sulfamethoxazole	16	S
Ciprofloxacin	>4	R
Ampicillin/sulbactam	>128	R
Cefazolin	>4	I. I.

Case #2: Minimizing Use of Broad Spectrum Antibiotics

Cefazolin: CLSI developed new breakpoints for cefazolin to use as a surrogate for oral cephalosporins in urinary isolates

	Susceptible	Intermediate	Resistant
Systemic	MIC ≤ 2 µg/mL	MIC 4 µg/mL	MIC ≥ 8 µg/mL
Urine	MIC ≤ 16 µg/mL		MIC ≥ 32 µg/mL

UMHS Cephalosporin Data

	% susceptible (3182 total isolates)
Cefazolin (Systemic breakpoint of ≤ 2)	74
Cefazolin (Urine breakpoint of ≤ 16)	94

Component Results

- Component
- URINE CULTURE (Abnormal)
- Klebsiella pneumoniae
- Comment:
- >100,000 cfu/mL

	Klebsiella pneumoniae	
	MIC	
Amikacin	<=4 mcg/mL S	
Amoxicillin + Clavulanate	<=8 mcg/mL \$	
Ampicillin	>16 mcg/mL R	
Ampicillin + Sulbactam	16 mcg/mL	
Aztreonam	<=4 mcg/mL S	
Cefazolin	4 mcg/mL R	
Cefepime	<=1 mcg/mL S	
Ceftriaxone	S	
Cefuroxime	16 mcg/mL I	
Cephalexin (cystitis)	S	
Ciprofloxacin	0.12 mcg/mL §	
Ertapenem	<=0.5 mcg/mL \$	
Fosfomycin	<=64 mcg/mL	
Gentamicin	<=2 mcg/mL S	
Levofloxacin	<=1 mcg/mL S	
Meropenem	<=1 mcg/mL S	
Nitrofurantoin	<=32 mcg/mL §	
Piperacillin/tazobactam	16 mcg/mL S	
Tobramycin	<=2 mcg/mL S	

UMHS Cephalosporin Data

	% susceptible (3182 total isolates)
Cefazolin (Systemic breakpoint of ≤ 2)	74
Cefazolin (Urine breakpoint of ≤ 16)	94

Component Results

- Component
- URINE CULTURE (Abnormal)
- Klebsiella pneumoniae
- Comment:
- >100,000 cfu/mL

	Kiepsiella pheumoniae
	MIC
Amikacin	<=4 mcg/mL S
Amoxicillin + Clavulanate	<=8 mcg/mL S
Ampicillin	>16 mcg/mL R
Ampicillin + Sulbactam	16 mcg/mL
Aztreonam	<=4 mcg/mL S
Cefazolin	4 mcg/mL R
Cefepime	<=1 mcg/mL S
Ceftriaxone	S
Cefuroxime	16 mcg/mL I
Cephalexin (cystitis)	S
Cephalexin (cystitis) Ciprofloxacin	\$ 0.12 mcg/mL \$
Cephalexin (cystitis) Ciprofloxacin Ertapenem	S 0.12 mcg/mL S <=0.5 mcg/mL S
Cephalexin (cystitis) Ciprofloxacin Ertapenem Fosfomycin	S 0.12 mcg/mL S <=0.5 mcg/mL
Cephalexin (cvstitis) Ciprofloxacin Ertapenem Fosfomycin Gentamicin	S 0.12 mcg/mL S <=0.5 mcg/mL
Cephalexin (cvstitis) Ciprofloxacin Ertapenem Fosfomycin Gentamicin Levofloxacin	S 0.12 mcg/mL S <=0.5 mcg/mL
Cephalexin (cvstitis) Ciprofloxacin Ertapenem Fosfomycin Gentamicin Levofloxacin Meropenem	S 0.12 mcg/mL S <=0.5 mcg/mL
Cephalexin (cvstitis) Ciprofloxacin Ertapenem Fosfomycin Gentamicin Levofloxacin Meropenem Nitrofurantoin	S 0.12 mcg/mL S <=0.5 mcg/mL
Cephalexin (cvstitis) Ciprofloxacin Ertapenem Fosfomycin Gentamicin Levofloxacin Meropenem Nitrofurantoin Piperacillin/tazobactam	S 0.12 mcg/mL S <=0.5 mcg/mL
Cephalexin (cvstitis) Ciprofloxacin Ertapenem Fosfomycin Gentamicin Levofloxacin Meropenem Nitrofurantoin Piperacillin/tazobactam Tobramycin	S 0.12 mcg/mL S <=0.5 mcg/mL

Amoxicillin-clavulanate vs. ampicillin-sulbactam

- Typically, ampicillin-sulbactam susceptibility is tested and amoxicillinclavulanate susceptibility is inferred
- Clavulanic acid is more active against various TEM and SHV B-lactamases
- Overall **20x** more potent than sulbactam against all tested B-lactamase enzymes

Case #2: Minimizing Use of Broad Spectrum Antibiotics

Ampicillin/sulbactam: Oral amoxicilin/clavulanate susceptibility is often inferred from ampicillin/sulbactam

UMHS Amoxicillin-clavulanate vs. Ampicillin-sulbactam

	<i>E. coli</i> % susceptible	<i>K. oxytoca</i> % susceptible	<i>K. pneumonia</i> e % susceptible
Amoxicillin- clavulanate	89	90	95
Ampicillin- sulbactam	69	58	87

Component Results

Component URINE CULTURE (Abnormal)

Klebsiella pneumoniae

Comment: >100,000 cfu/mL

	Klebsiella pneumo	oniae
	MIC	
Amikacin	<=4 mcg/mL	S
Amoxicillin + Clavulanate	<=8 mcg/mL	S
Ampicillin	>32 mcg/mL	R
Ampicillin + Sulbactam	32 mcg/mL	R
Aztreonam	<=4 mcg/mL	S
Cefazolin	<=2 mcg/mL	S
Cefepime	<=1 mcg/mL	S
Ceftriaxone	S	
Cefuroxime	<=4 mcg/mL	S
Ciprofloxacin	<=0.06 mcg/mL	S
Ertapenem	<=0.5 mcg/mL	S
Fosfomycin	<=64 m	cg/mL
Gentamicin	<=2 mcg/mL	S
Levofloxacin	<=1 mcg/mL	S
Meropenem	<=1 mcg/mL	S
Nitrofurantoin	<=32 mcg/mL	S
Piperacillin/tazobactam	<=8 mcg/mL	S
Tobramycin	<=2 mcg/mL	S
Trimethoprim/Sulfa	<=2 mcg/mL	S

UMHS Amoxicillin-clavulanate vs. Ampicillin-sulbactam

	<i>E. coli</i> % susceptible	<i>K. oxytoca</i> % susceptible	<i>K. pneumonia</i> e % susceptible
Amoxicillin- clavulanate	89	90	95
Ampicillin- sulbactam	69	58	87

Component Results

Component URINE CULTURE (Abnormal)

Klebsiella pneumoniae

Comment:

>100,000 cfu/mL

	Klebsiella pneumor	niae
	MIC	
Amikacin	<=4 mcg/mL	S
Amoxicillin + Clavulanate	<=8 mcg/mL	\$ 7
Ampicillin	>32 mcg/mL	R
Ampicillin + Sulbactam	32 mcg/mL	R 🏹
Aztreonam	<=4 mcg/mL	S
Cefazolin	<=2 mcg/mL	S
Cefepime	<=1 mcg/mL	S
Ceftriaxone	S	
Cefuroxime	<=4 mcg/mL	S
Ciprofloxacin	<=0.06 mcg/mL	S
Ertapenem	<=0.5 mcg/mL	S
Fosfomycin	<=64 mc	g/mL
Gentamicin	<=2 mcg/mL	S
Levofloxacin	<=1 mcg/mL	S
Meropenem	<=1 mcg/mL	S
Nitrofurantoin	<=32 mcg/mL	S
Piperacillin/tazobactam	<=8 mcg/mL	S
Tobramycin	<=2 mcg/mL	S
Trimethoprim/Sulfa	<=2 mcg/mL	S

UMHS Fosfomycin Susceptibility Data

E. coli urine isolates

Antibiotic	% susceptibility
Fosfomycin	100%
Nitrofurantoin	98%
Ciprofloxacin	83%
Trimethoprim- sulfamethoxazole	80%
Ciprofloxacin	83%
Ampicillin	58%

Component Results

Component	
URINE CULTURE (Abnormal)	
Klebsiella pneumoniae	
Comment:	
>100.000 cfu/mL	

	Klebsiella pneumoniae	
	MIC	
Amikacin	<=4 mcg/mL S	
Amoxicillin + Clavulanate	<=8 mcg/mL S	
Ampicillin	>16 mcg/mL R	
Ampicillin + Sulbactam	16 mcg/mL	
Aztreonam	<=4 mcg/mL S	
Cefazolin	4 mcg/mL S	
Cefepime	<=1 mcg/mL S	
Ceftriaxone	S	
Cefuroxime	16 mcg/mL I	
Cephalexin (cystitis)	S	
Ciprofloxacin	0.12 mcg/mL S	
Ertapenem	<=0.5 mcg/mL \$	
Fosfomycin	<=64 mcg/mL	
Gentamicin	<=2 mcg/mL S	
Levofloxacin	<=1 mcg/mL S	
Meropenem	<=1 mcg/mL S	
Nitrofurantoin	<=32 mcg/mL \$	
Piperacillin/tazobactam	16 mcg/mL S	
Tobramycin	<=2 mcg/mL S	
Trimethoprim/Sulfa	<=2 mcg/mL \$	

UMHS Fosfomycin Susceptibility Data

E. coli urine isolates

Antibiotic	% susceptibility
Fosfomycin	100%
Nitrofurantoin	98%
Ciprofloxacin	83%
Trimethoprim- sulfamethoxazole	80%
Ciprofloxacin	83%
Ampicillin	58%

Component Results

>100,000 cfu/mL

	Klebsiella pneumoniae	
	MIC	
Amikacin	<=4 mcg/mL S	
Amoxicillin + Clavulanate	<=8 mcg/mL S	
Ampicillin	>16 mcg/mL R	
Ampicillin + Sulbactam	16 mcg/mL	
Aztreonam	<=4 mcg/mL S	
Cefazolin	4 mcg/mL S	
Cefepime	<=1 mcg/mL S	
Ceftriaxone	S	
Cefuroxime	16 mcg/mL I	
Cephalexin (cystitis)	S	
Ciprofloxacin	0.12 mcg/mL \$	
Ertapenem	<=0.5 mcg/mL \$	
Fosfomycin	<=64 mcg/mL	
Gentamicin	<=2 mcg/mL \$	
Levofloxacin	<=1 mcg/mL S	
Meropenem	<=1 mcg/mL S	
Nitrofurantoin	<=32 mcg/mL \$	
Piperacillin/tazobactam	16 mcg/mL S	
Tobramycin	<=2 mcg/mL S	
Trimethoprim/Sulfa	<=2 mcg/mL \$	

Susceptibility of Multidrug-Resistant Gram-Negative Urine Isolates to Oral Antibiotics

Antibiotic	% susceptibility (all MDR isolates) n=91
Fosfomycin	94.5
Nitrofurantoin	85.6
Trimethoprim-sulfamethoxazole	40.2
Ciprofloxacin	34.1
Ampicillin	4.2
Antibiotic	% susceptibility (ESBL confirmed isolates) n=30
Antibiotic Fosfomycin	% susceptibility (ESBL confirmed isolates) n=30 96.7
Antibiotic Fosfomycin Nitrofurantoin	% susceptibility (ESBL confirmed isolates) n=30 96.7 76.7
AntibioticFosfomycinNitrofurantoinTrimethoprim-sulfamethoxazole	% susceptibility (ESBL confirmed isolates) n=30 96.7 76.7 43.3
AntibioticFosfomycinNitrofurantoinTrimethoprim-sulfamethoxazoleCiprofloxacin	% susceptibility (ESBL confirmed isolates) n=30 96.7 76.7 43.3 10

Utilization of Institutional Data to Guide Empiric MDRO Therapy

- Routine testing of newer antibiotics allows for analysis of populations that would be benefit from empiric therapy
- Example: ceftolozane/tazobactam traditionally preferred for Pseudomonas resistant to piperacillin/tazobactam, cefepime and carbapenems (EBR)
 - Evaluate incidence of ceftolozane/tazobactam resistance in relation to other newer agents for EBR Pseudomonas
 - Identify risk factors for ceftolozane/tazobactam resistance based on institutional patient data

Summary

- The focus on antibiotic stewardship is increasing and will be mandated, with the focus on providing optimal care, and reducing unnecessary antibiotic exposure risk for developing MDR infections
- Obtaining timely and accurate organism identification and susceptibility data is essential in conducting daily antibiotic stewardship activities
- Multidisciplinary collaboration is essential in optimizing patient outcomes

Summary

- Sensititre[™] offers several potential advantages that impact microbiology and stewardship:
 - Fewer number of "limitations" that force alternate methods to identify an organisms or test susceptibilities, which may cause a delay in appropriate therapy
 - Recently approved antibiotics are available for susceptibility testing significantly sooner
 - Fully customizable panel allow selection of drug AND concentration
 - Changes to panel configurations can be done in a timely manner, and allow compliance with CLSI breakpoint changes

Automated Susceptibility Testing to Optimize Patient Outcomes

Jerod Nagel, PharmD, BCIDP Clinical Pharmacist, Infectious Diseases Clinical Assistant Professor Director Infectious Diseases Residency University of Michigan Health System