NGS Implementation in a Clinical Laboratory

Tabetha Sundin, PhD, HCLD, MB (ASCP) CM
Molecular Diagnostics
Sentara Healthcare
Overview

• Background
• Rational
• Test Menu Development
• Business Case
 • Alternate funding source
• NGS Utilization
 • Cystic Fibrosis (CF)
 • Cancer Hotspot v2 (CHPV2)
 • Oncomine Focus Assay (OFA)
 • Oncomine BRCA 1/2 Research Assay
 • Oncomine Myeloid Research Assay
Sentara Network

- 12 Hospital System
- >200 Physician Offices
- Own a private payer insurance
- Reference Lab is located in the flagship hospital
Sentara Reference Laboratory

Annual Test Volume

9,000,000 Tests

200,000 Molecular Tests

1500 Molecular Oncology Tests
Molecular Test Menu

Molecular Oncology
- Oncomine Focus Assay (NGS)
- EGFR
- KRAS
- BRAF
- NRAS
- JAK2

Molecular Genetics
- CFTR
- Fragile X
- SMN1
- FVL, PT, MTHFR

Molecular Infectious Disease
- HIV (viral load & genotype)
- HCV (viral load & genotype)
- HBV
- CMV
- BK
- HSV-1/-2
- BV
- Yeast
- RPP
- Bordetella
How we decide to insource a test?

- Turnaround times sensitive?
- High enough volume?
 - Review Reference Lab Utilization
 - Top 20 tests by volume or spend
- Assay available on current instruments?
- Does my staff already have competency on a similar test?
- Can I perform an equivalent test for a lower cost?
In-house testing efficiencies:

• Expense avoidance
 • Most molecular tests cost hundreds of dollars to send to reference labs for testing
 • Buy vs own analysis

• Improved TAT
 • Many molecular tests take weeks to result from reference labs
 • We perform esoteric testing weekly

• Local physician input into test menu
 • Increased communication between providers and the laboratory allows us to develop our test menu in concert with physician ordering patterns.
Next-Generation Sequencing

• Considerations
 • Cost of in-house NGS vs single gene assays and send-out testing
 • Throughput vs single gene assays
 • Provider needs
 • Guideline changes both current and future
NGS
- Broad
- High Throughput
- Highly multiplexed
- Expensive, but low cost per gene
- DATA
- Bioinformatics experience needed
- Long workflow, although shorter than serially testing genes
- Analytical and clinical interpretation required

PCR-based assays
- Very targeted
- Quick
- Inexpensive
- Less experience required
- Ideal for single gene hotspot analysis
- Data interpretation is clear
Advanced or metastatic Adenocarcinoma NSCLC

Testing should be conducted as part of broad molecular profiling.

- EGFR
- ALK
- ROS1
- BRAF
- PD-L1
NGS Efficiencies

Cost Comparison

Time Comparison

1 Gene 3 Genes 50 Genes

PCR NGS
We decided insourcing NGS was the right thing to do for our health system.
Choosing the Right Platform

- Vendor selection criteria
 - Accuracy
 - Throughput
 - Ease of workflow
 - Test menu alignment with our needs
 - Cost per sample
 - Cost of instrument
 - Reporting capabilities
 - Support after the sale
 - Instrument service
 - Bioinformatics
- Ultimately the Ion S5/Ion Chef workflow was the best fit for our organization.
Funding the Project

• We typically have one capital funding source for all laboratory equipment for our health system.
• We have an alternate funding source (strategic capital) outside of the laboratory funding source if the project meets certain criteria.
 • A minimum dollar amount
 • Must be cutting-edge and give our health system a strategic advantage
 • Has to be presented to the board for approval
• We created a project to increase the sequencing capabilities of our laboratory (NGS & Sanger sequencing) to meet the thresholds for strategic capital.
Test Menu Pipeline

Sanger Sequencing/Fragment Analysis

Prenatal Screening (Fragile X)

Cystic Fibrosis Expanded Panel

Cancer Hotspot Panel v2

Prenatal Screening (Spinal Muscular Atrophy)

Oncomine Focus Assay (OFA)

Oncomine BRCA 1/2

Hem-path (JAK2 Exon 12/13)

Oncomine Myeloid Research Assay

Next-Generation Sequencing
Business Case

• The business case showed that it was favorable to insource this testing versus paying to send-out to a our reference laboratory (37.6% internal rate of return).
 • Cost per reportable (tech time, repeat rate, control cost, validation cost, QA cost)
 • Instrument Purchases (w/depreciation)
 • Instrument maintenance
 • Construction needed for instrument
 • Did not consider lease, electrical, etc.
• The favorable business case made it easy for us to get board approval for the project.
Automated NGS Workflow

Library Prep
15 minutes hands-on
7 hours walk-away
8 samples

Templatting
15 minutes hands-on
10 hours walk-away
24-32 samples

Sequencing
15 minutes hands-on
3 hours walk-away
24-32 samples

Analysis
1.5 hours hands-on time
2.5 hours walk-away
24-32 samples

Day 1 Overnight Day 2 Day 2
NGS Testing

- Cystic Fibrosis Carrier Screening
 - Chosen first because:
 - High volume (30-40 per week)
 - Single gene with SNPs and Indels (least complex)
 - Needed a larger panel to match our clinicians ordering patterns.
 - CF assay design was completely customized using information on CFTR from CFTR2.org.
 - Use Ion Reporter for variant calling
 - Validation was complete in 3 months using our previously tested patients from Luminex and Coriell specimens.
 - All samples correlated well.
 - Based on the validation we confirm poly-T calls by Luminex in R117H positive patients.
Validations

- Cancer Hotspot Panel v2 (CHPv2)
 - Still only SNPs and Indels, 50 genes
 - Took more time optimizing the bioinformatics piece of the assay due to the somatic nature of the mutations (need better sensitivity than germline mutations).
 - Also had to chose a vendor for reporting.
 - Variant reporting, clinical trials, treatment/resistance information
Validations

• Oncomine Focus Assay (OFA)
• More Comprehensive
 • In addition to SNPs, MNVs, and INDEL mutations we had to validate RNA fusions and DNA copy number variants (CNVs)
 • More complex with RNA and DNA
 • Harder to source standards/positive patients due to low prevalence
 • Reevaluated reporting software to choose optimal platform that was capable of analyzing the addition of CNVs and Fusions.
New Panel: Oncomine Focus Assay

Hotspot genes, n=35

<table>
<thead>
<tr>
<th>DNA Panel</th>
<th>RNA Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1</td>
<td>IDH2</td>
</tr>
<tr>
<td>ALK</td>
<td>JAK1</td>
</tr>
<tr>
<td>AR</td>
<td>JAK2</td>
</tr>
<tr>
<td>Braf</td>
<td>JAK3</td>
</tr>
<tr>
<td>CDK4</td>
<td>Kit</td>
</tr>
<tr>
<td>CTNNB1</td>
<td>KRAS</td>
</tr>
<tr>
<td>DDR2</td>
<td>MAP2K1</td>
</tr>
<tr>
<td>EGFR</td>
<td>MAP2K2</td>
</tr>
<tr>
<td>ERBB2</td>
<td>MET</td>
</tr>
<tr>
<td>ERBB3</td>
<td>Mtor</td>
</tr>
<tr>
<td>ERBB4</td>
<td>NRAS</td>
</tr>
<tr>
<td>ESR1</td>
<td>PDGFRA</td>
</tr>
<tr>
<td>FGFR2</td>
<td>PIK3CA</td>
</tr>
<tr>
<td>FGFR3</td>
<td>RAF1</td>
</tr>
<tr>
<td>GNA11</td>
<td>RET</td>
</tr>
<tr>
<td>GNAQ</td>
<td>ROS1</td>
</tr>
<tr>
<td>HRAS</td>
<td>SMO</td>
</tr>
<tr>
<td>IDH1</td>
<td></td>
</tr>
</tbody>
</table>

Copy Number Variants, n=19

<table>
<thead>
<tr>
<th>Fusion drivers, n=23</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK</td>
</tr>
<tr>
<td>RET</td>
</tr>
<tr>
<td>ROS1</td>
</tr>
<tr>
<td>NTRK1</td>
</tr>
<tr>
<td>NTRK2</td>
</tr>
<tr>
<td>NTRK3</td>
</tr>
<tr>
<td>FGFR1</td>
</tr>
<tr>
<td>FGFR2</td>
</tr>
<tr>
<td>FGFR3</td>
</tr>
<tr>
<td>MET</td>
</tr>
<tr>
<td>BRAF</td>
</tr>
<tr>
<td>RAF1</td>
</tr>
<tr>
<td>ERG</td>
</tr>
<tr>
<td>ETV1</td>
</tr>
<tr>
<td>ETV4</td>
</tr>
<tr>
<td>ETV5</td>
</tr>
<tr>
<td>ABL1</td>
</tr>
<tr>
<td>AKT1</td>
</tr>
<tr>
<td>AXL</td>
</tr>
<tr>
<td>EGFR</td>
</tr>
<tr>
<td>ERBB2</td>
</tr>
<tr>
<td>PDGFRA</td>
</tr>
<tr>
<td>PPARG</td>
</tr>
</tbody>
</table>

52 unique genes

269 amplicons in DNA panel, 272 amplicons in RNA panel
Oncomine Knowledge Reporter (OKR)

- Best-in-class interpretation
- Performed with a cloud-based software
- Much faster to generate a report
 - Reduced data analysis time from 20 minutes per case to 5 minutes per case.
 - Saves 5 hours per week of tech time!
- Clear and concise report
- Flexible to meet Oncologist’s needs
- Affordable
Current Validations

- Oncomine BRCA 1/2 Research Assay – 3 to 6 months from go-live
 - Two gene, two pool DNA panel
 - SNPs, INDELS, AND Large Genomic Rearrangements (LGRs)
 - LGRs span exon deletion/duplications, large INDELS, etc.
 - Samples sourced within one week by data mining our hospital networks EMR.
 - Commercial reference standards and patient DNA readily available.
 - Workflow optimized for automation from nucleic acid recovery to data analysis.
 - Reporting platform already selected.
Current Validations

• Oncomine Myeloid Research Assay
 • Have begun the validation on this assay.
 • Larger panel with fusions.
 • Panel optimized for nucleic acid extracted from fresh peripheral blood and bone marrow samples. FFPE embedded samples not recommended.
 • Commercial reference standards available.