

Pharmacogenomics-guided optimization of antiplatelet therapy and impact on patient management: a health-system's perspective

October 7, 2025

D. Max Smith, PharmD, BCPS

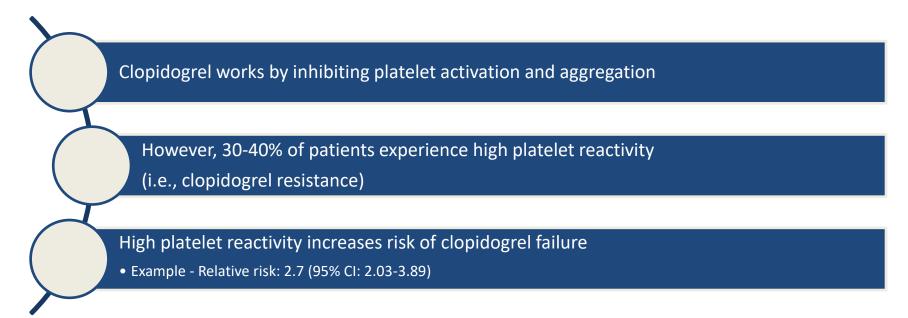
Clinical Pharmacogenomics Specialist, MedStar Health

Associate Professor, Georgetown University Medical Center

Conflicts of Interest

- This continuing education activity is supported by Genomadix.
- Dr. Smith will discuss the Genomadix Cube™ CYP2C19 test during this presentation.
- Dr. Smith has no other relevant financial relationships with commercial interests related to this content.

Objectives


- Recognize the current evidence on CYP2C19-guided antiplatelet therapy
- Describe the use of rapid CYP2C19 genotyping at MedStar Health

The Evidence

The Problem: Clopidogrel is Less Effective in Select Patients

CYP2C19 Genotype is Associated with Clopidogrel Response

- Clopidogrel is a prodrug
- CYP2C19 genotype is associated with bioactivation of clopidogrel
- ~30% of patients have poor or intermediate CYP2C19 metabolism
- Varies based on ancestry 2-Oxo-Clopidogrel Clopidogrel CYP2C19 CYP2C19 clopidogrel thiol H4 Inactive **Inactive Active** CYP2C9 CYP3A4 CYP1A2 drug drug CYP2B6 CYP2B6 CYP3A5 Drug PON1

Genotyping Terminology & Implications

CYP2C19 phenotype	Implications	Other Terminology in Literature	Therapeutic recommendation
Ultrarapid metabolizer	Normal or increased clopidogrel active metabolite formation		
Rapid metabolizer Normal metabolizer	 Normal or lower on-treatment platelet reactivity No association with higher bleeding risk Normal clopidogrel active metabolite formation 	CYP2C19 wild type or LOF non-carrier	Standard dose clopidogrel
	Normal on-treatment platelet reactivity		
Intermediate metabolizer	Reduced clopidogrel active metabolite formation	Loss-of-function	Avoid clopidogrel if possible. Use prasugrel or ticagrelor at standard
Poor metabolizer	 Increased on-treatment platelet reactivity Increased risk for ischemic events 	(LOF)carrier	dose if no contraindication.

Ancestry & CYP2C19

Phenotype	African- American/ Afro-Caribbean	American*	Central/ South Asian	East Asian	European	Latino	Near Eastern	Oceanian	Sub- Saharan African
Ultrarapid Metabolizer	4%	1%	3%	0%	5%	3%	4%	0%	3%
Rapid Metabolizer	24%	14%	19%	3%	27%	24%	26%	2%	21%
Normal Metabolizer	33%	63%	30%	38%	40%	52%	45%	4%	37%
Intermediate Metabolizer (IM)	34%	21%	41%	46%	26%	19%	24%	37%	34%
Poor Metabolizer (PM)	5%	1%	8%	13%	2%	1%	2%	57%	5%

Frequencies and biogeographical groups per PharmGKB

High variant frequency across populations

^{*}Populations from both North and South America with ancestors predating European colonization, including American Indian, Alaska Native, First Nations, Inuit, and Métis in Canada, and Indigenous peoples of Central and South America.

Summary: They recognize the role of CYP2C19 genotype but do not recommend routine testing

Guidelines and the FDA

FDA & Medical Society Perspectives

FDA

- Boxed warning to avoid clopidogrel in CYP2C19 poor metabolizers
- FDA Table of PGx: Consider alternative therapy in poor & intermediate metabolizers
- Does not comment on whether or not to test

AHA/ACC

- June, 2024: Published an updated scientific statement
- "Evidence to date supports CYP2C19 genetic testing before oral P2Y12 inhibitors are prescribed"

CPIC

- Provides therapy recommendations based on CYP2C19
 - Consider alternative therapy in poor & intermediate metabolizers
- Does not comment on whether or not to test

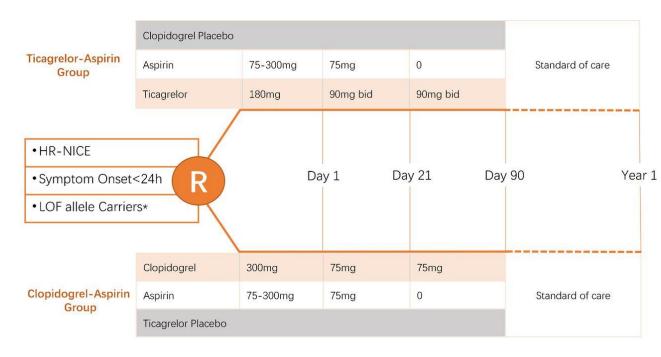
FDA: Food and Drug Administration

AHA/ACC American Heart Association and American Colleges of Cardiology

CPIC: Clinical Pharmacogenetics Implementation Consortium

Pereira, et al. Circulation. 2024. PMID: 38899464 Lee, et al. Clin Pharm Ther. 2022. PMID: 35034351

Recent evidence - Stroke and Transient Ischemic Attack (TIA): The CHANCE-2 Trial

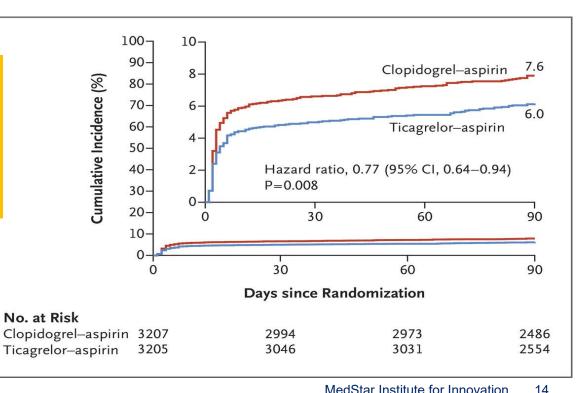

Landmark Trial: CHANCE-2

Population:

- Patient with minor stroke or transient ischemic attack (TIA)
- All had CYP2C19 intermediate or poor metabolism

Design:

- Randomized, doubleblind, placebocontrolled trial at 202 centers in China
- Randomized 6412 patients



^{*} Screen three common *CYF2C19* genotype variants (*2, *3, *17) LOF allele Carriers indicate those with intermediate metabolizers (*1/*2 or *1/*3) and poor metabolizers (*2/*2, *3/*3 or *2/*3)

CHANCE-2 Primary Endpoint: Secondary Stroke within 90 Days

Among CYP2C19 LOF-carriers, stroke was more common in patients treated with clopidogrel

CHANCE-2 Secondary Endpoints

- Turnaround time is critical
 - Trial returned results in 80 minutes for >95% of patients
 - Used point-of-care testing (machine not available in US)
 - Results then informed antiplatelet therapy decision
- Bleeding
 - Similar risk of severe or moderate bleeding (0.3% vs 0.3%)
 - Ticagrelor has a higher risk of minor bleeding (5.3% vs 2.5%)

Why not use ticagrelor for all?

Safety

Higher risk of minor bleeding

Adherence

Twice daily dosing → patients more likely to miss doses

Cost

More expensive for the patient

Can We Implement Like The CHANCE-2 Trial?

MSH Stroke Initiative: System Level Program

MWHC

- Expected Volume: 250/year
- Dir. Stroke Program: Amie Hsia, MD
- · Lab Dir: Marie Wanys
- Dir. Of Pathology: Patricia Tsang, MD
- Stroke Coord.: Karen (Moriarty) Poole

MGUH

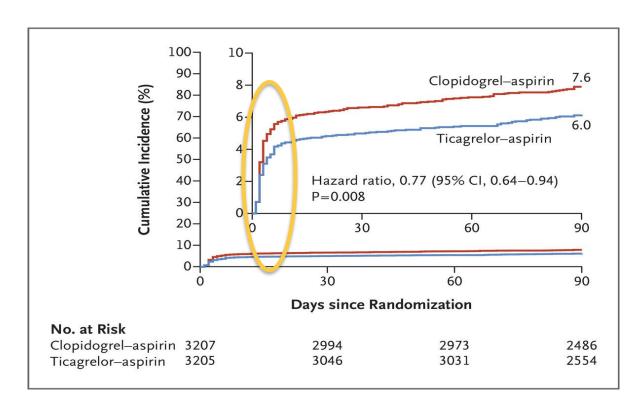
- Expected Volume: 225/year
- Dir. Stroke Prog.: Andrew Stemer, MD
- · Lab Dir: Devin Lockard
- Dir. Of Pathology: Jay Zeck, MD
- Stroke Coord.: Kelsey Dawson, RN

MFSMC

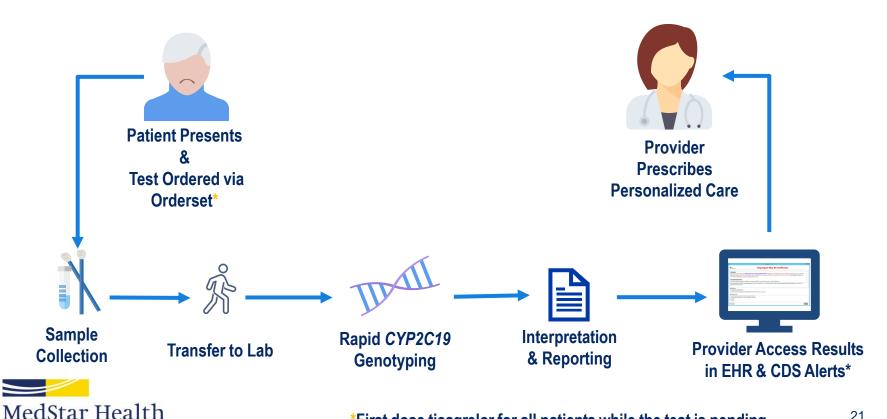
- Expected Volume: 250/year
- Dir. Stroke Program: Paul Singh, MD
- · Lab Dir: Adi Nkwonta
- Dir. Of Pathology: Jennifer Brousard, MD
- Stroke Coord.: Ariel Woodward BSN, RN

Steering Team & Roles

- PGx Program Dir. Max Smith, PharmD & Sandra Swain, MD
- Lab Coord.: Justin Reuter
- Pathology Coord.: Moira Larsen, MD
- Neurology Council: Carlo Tornatore, MD
- Project Manager: Rhajni Gooden



73 year-old male presents to **Safety** Patient MWHC with stroke symptoms. Presentation Diagnosed with a Transient **Moment** Ischemic Attack (TIA) CYP2C19 is CYP219 genetic test Patient prescribed Day 1 ordered to assess a send-out clopidogrel to reduce risk of clopidogrel's effectiveness lab secondary stroke Patient discharged 20 Day 2 hours after presentation Results show patient CYP2C19 is a poor Day 8 metabolizer Unable to contact the Patient needs to be changed patient, so he remains Day 8+ from clopidogrel to ticagrelor at increased risk of secondary stroke


Can We Implement like the CHANCE-2 Trial?

- Window for benefit may be early
- Implementation efforts stalled in 2022
- Rapid assay became available in 2023

General Workflow (~ 8-12 hours)

Technician to follow up with Stroke Responder.

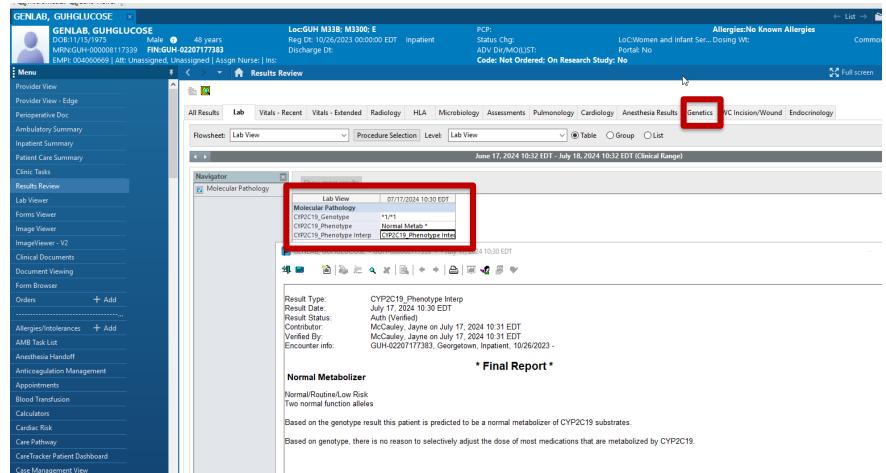
Interdisciplinary Team

Physicians

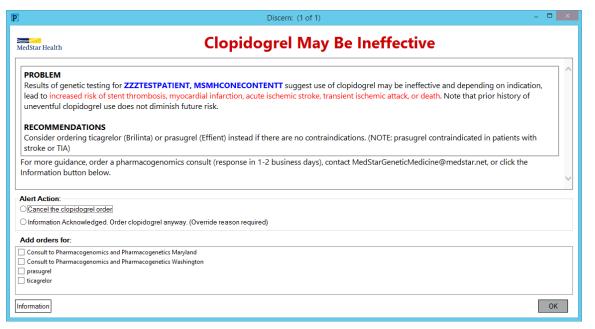
- Order test
- React to results

Stroke Responders (nurses)

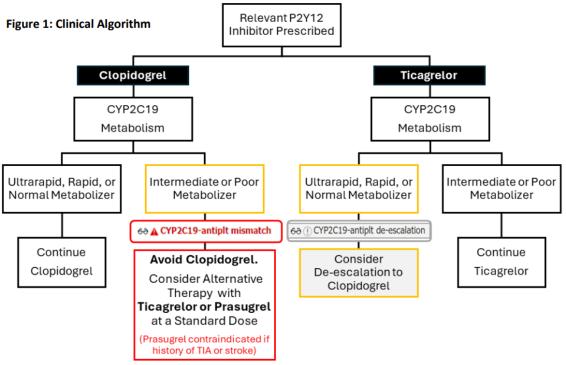
Collect the sample


Lab personnel

• Run the test


Pharmacists

 Second layer of support



If an Order is Placed for Clopidogrel in a CYP2C19 Poor or Intermediate Metabolizer:

Pharmacist Clinical Surveillance Alerts

Initial Experiences with Stroke & TIA

Through 6/30/2025

Sites [Start Date]	Tests Ordered per Week	Tests Completed	Turnaround Time Order to Results (Median, 25 ^{th,} 75 th percentile)	CYP2C19 IM/PMs	Prescribing aligned with PGx Results ¹
MGUH [Aug '24]	4.9	203	6.6 (4.1, 12) hrs	63 (31%)	93%
MFSMC [Dec '24]	4.9	123	6.1 (3.3, 17) hrs	46 (37%)	89%
MWHC [Mar '25]	3.0	42	4.4 (2.9, 7.6) hrs	18 (43%)	94%
Overall	4.6	368	6.1 (3.6, 12) hrs	131 (35%)	92%

N/A: Data not yet available.

¹Analysis ongoing. Current data include those with CYP2C19 results prescribed a P2Y12i at discharge (MFSMC: 66; MGUH: 74; MWHC: 16). CYP2C19 IM/PMs prescribed ticagrelor and other CYP2C19 results are prescribed clopidogrel.

Summary

- Clopidogrel use in CYP2C19 poor and intermediate metabolism is associated with increased ischemic events
- MedStar Health launched rapid CYP2C19 genotyping at its comprehensive stroke centers
- An engaged interdisciplinary team was critical to successful implementation

MedStar Health: Rapid CYP2C19 Genotype

Why do I need a Rapid CYP2C19 Genotype test?

- Clopidogrel (Plavix) is widely used in the treatment of stroke, acute coronary syndrome, and
 other conditions characterized by a high risk of ischemic events. However, CYP2C19 is
 necessary to bioactivate clopidogrel and clopidogrel's effectiveness can vary significantly
 among individuals due to genetic differences in the CYP2C19 metabolism of clopidogrel.
- The in-house Genomadix Cube CYP2C19 System detects three alleles (*2, *3, and *17) using three buccal swabs, which is used to determine the phenotype of a patient.

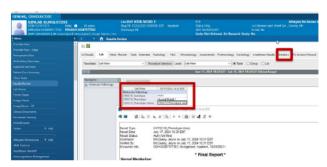
Who is the target population for testing?

- · Patients who may start clopidogrel
 - For example, patients presenting with ischemic stroke, transient ischemic attack (TIA), acu
 coronary syndrome (ACS), or undergoing a percutaneous coronary intervention (PCI)
- Patients with a complex history of medication response or current clopidogrel therapy is ineffective

When do I order a test?

- Before initiating clopidogrel therapy: to improve treatment outcomes by preventing unnecessary drug exposure to ineffective therapy and reducing the risk of complications
- In patients already on clopidogrel therapy: to reassess the need for alternative therapy to prevent treatment failure and identify risk of complications

How do I order a test?


- 1. Search for the "CYP2C19 Rapid Genotype" order or select it from a relevant order set
- 2. Typical turnaround time: within 12 hours

How is the sample collected?

- The test requires 3 test-specific buccal swabs. At MFSMC, ED nurses have been trained to collect these samples. To obtain the unique buccal swabs needed for this test, call lab:
- An example of the collection method can be found in the first minute of the following video:
 - https://www.voutube.com/watch?v= n5t9TmksLw

Where can I find the test results?

Results are located in the Genetics tab, within Results Review.

What do I do with the test results?

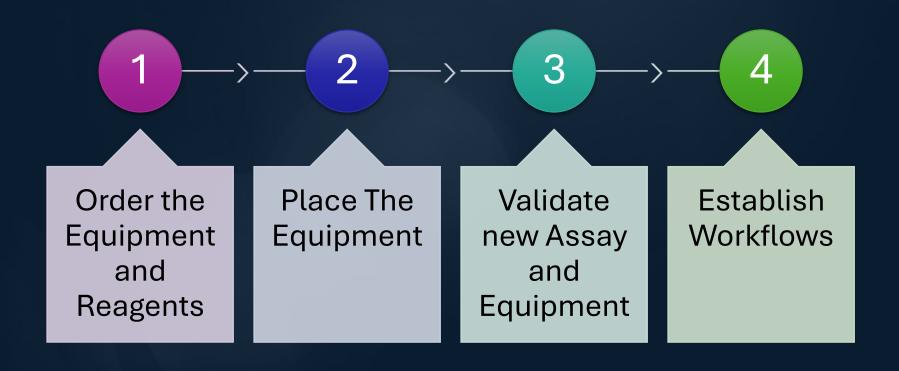
CYP2C19 Result	Preferred P2Y12 Inhibitor
Ultrarapid Metabolism	Clopidogrel (Plavix)
Rapid Metabolism	Clopidogrel (Plavix)
Normal Metabolism	Clopidogrel (Plavix)
Intermediate Metabolism	Ticagrelor (Brilinta)
Poor Metabolism	Ticagrelor (Brilinta)
Unknown or indeterminate	Ticagrelor (Brilinta)

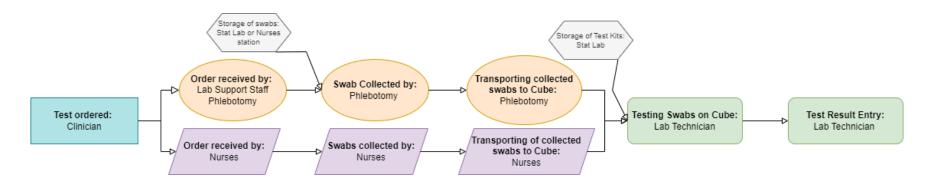
For additional support call pharmacy, place an order for a PGx Consult, or refer to CPIC guidelines.

References

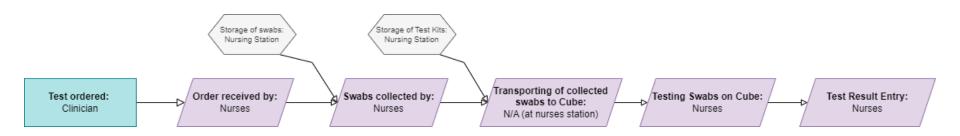
- 1.Lee CR, et. al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin Pharmacol Ther. 2022;112(5):959-967. PMID: 35034351.
- Wang Y, et. al. Ticagrelor versus Clopidogrel in CYP2C19 Loss-of-Function Carriers with Stroke or TIA. N Engl J Med. 2021;385(27):2520-2530. PMID: 34708996.

Precision Medicine Integration


Pharmacogenomic testing integration enhances personalized treatment decisions and improves overall survival rates

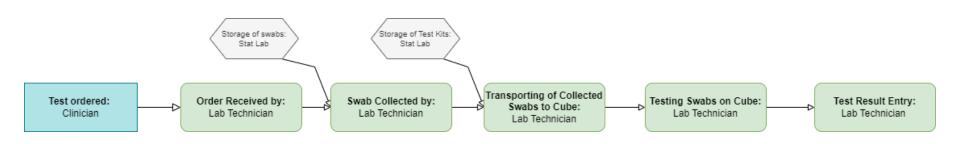

Strategic Considerations Do your due diligence

Decision to Deployment


Implementation: Case Study 1

	Run By	Overseen By
CAP Accreditation	Lab Technician	Lab Management
Quality Controls	Lab Technician	Lab Management
Proficiency Testing	Lab Technician	Lab Management
Training Management	Lab Management	Lab Managament
	Nurses/Phlebotomy	Lab Management

Minimum Personnel	Test Offered (hrs/days)			
Requirements	24/7	12/5	12/7	
Nurses/Phlebotomy	3	2	3	
Lab Management	3	2	3	


Implementation: Case Study 2

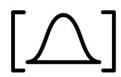
	Run By	Overseen By
CAP Accreditation	Lab Management	Lab Management
Quality Controls	Nurses	Lab Management
Proficiency Testing	Lab Management	Lab Management
Training Management	Nurse Management	Lab Management

Minimum	Test Offered (hrs/days)			
Personnel Requirements	24/7	12/5	12/7	
Nurses	3	2	3	

Implementation: Case Study 3

	Run By	Overseen By
CAP Accreditation	Lab Technician	Lab Management
Quality Controls	Lab Technician	Lab Management
Proficiency Testing	Lab Technician	Lab Management
Training	Lab	Lab

Minimum	Test Offered (hrs/days)			
Personnel Requirements	24/7	12/5	12/7	
Lab Staff	3	2	3	


Perform CAP-Compliant Test Validation

Laboratories are required to perform analytical validation of each assay, method, or instrument system before use in patient testing

6 Required Components:

Reference Intervals

Precision

Analytical Sensitivity

Reportable Range

Analytical Specificity

Creating the SOP: Turning Strategy into Standard Practice

Sample Handling

List all required reagents, equipment and software

Step-bystep instructions for performing the tasks

Quality Control and Assurance

Safety and Precautions

ion and Records

Troubleshoo ting Steps

The Lab Is Ready-Now Let's Operationalize

Define Workflows and Drive Education

How to Order?

Routing

Tracking

\$ Insurance Coverage

How to Collect?

Delivering PGx Insights Effectively

Training and Education

Access to Guidelines

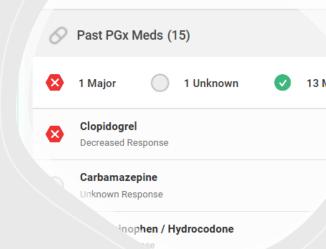
Clear Result Summaries

Educational Materials

Follow up and Care Coordination

Audit Trails


Regulatory alignment


Consent and Communication

HIPAA-Compliant Data Handling

POLYPHARMACY PGX RIS

More Than Just a Lab Value

- ♣ Genomic Data Integration
- Decision Support Tools
- **ii** Outcome Tracking and Collaboration

Key Takeaways

- Pharmacogenomic Testing Benefits
- Laboratory Implementation Considerations
- Clinical Workflow Alignment
- Personalized Medicine Impact

References

- All images and icons used in this presentation were generated using Microsoft Copilot in PowerPoint. These visuals are license-free and safe for commercial use under Microsoft's Copilot Copyright Commitment.
- Source: Microsoft 365 Commercial License Al-generated content via Copilot and Designer tools. No external or third-party copyrighted images were used.

Thank you

• Amanda Hanson

ahanson@srhs.com