Use of Blood Lactate Measurements in the Critical Care Setting

John G Toffaletti, PhD
Director of Blood Gas and Clinical Pediatric Labs
Professor of Pathology
Duke University Medical Center
Chief, VAMC Clinical Chemistry Lab
Durham, NC
email: john.toffaletti@duke.edu
Objectives

- The biochemical mechanisms and clinical processes that can increase blood lactate.
- The clinical implications of an increased blood lactate in surgery, ECMO, in the ED, and in sepsis.
- The general timing sequence of lactate measurements for monitoring patients in critical care.
- The stability of lactate in blood with and without stabilizers.
- When and where POC measurements of blood lactate are useful.
Lactate Testing at Duke Medical Center

Test Volume / FY

Fiscal Year

F Y 94-5  FY 96-7  FY 98-9  FY 00-1  FY 02-3  FY 04-5  FY 06-7  FY 07-8  FY 08-9  FY 09-10  FY 15-16

- Shock Pnl
- ABG Lab
- RRL
- CPED
Lactate

\[
\text{CH}_3 - \text{CH} - \text{C} \quad \text{O} \quad \text{O}^- \\
\text{OH}
\]
Production of Lactate from Pyruvate:
Directly Depends on Ratio of NADH/NAD⁺
Indirectly Depends on Supply of Oxygen

Blood

O₂

Glucose

Glycolysis

NAD⁺

2 ATP

Pyruvate

Lactate diffuses into blood

Lactate

Lots of ADP

02

Ox Phos

Mitochondria

Krebs cycle

Acetyl Co A

PDH

NADH

H⁺

Cell

36 ATP

CO₂

NAD⁺

Ox Phos

Mitochondria
The Production of Lactate from Pyruvate Actually **Consumes** Acid

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Net gain/loss of acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose → 2 pyruvate + 2H⁺</td>
<td>produces 2 H⁺</td>
</tr>
<tr>
<td>2 pyruvate + 2H⁺ → 2 lactate</td>
<td>consumes 2 H⁺</td>
</tr>
<tr>
<td>ATP + H₂O → ADP + HPO₄²⁻ + H⁺</td>
<td>produces 1 H⁺</td>
</tr>
</tbody>
</table>

See: "Biochemistry of Exercise-Induced Metabolic Acidosis". Am J Physiol Integr Comp Physiol 2004; 287: R502-R516
What Processes Can Elevate Blood Lactate?

- Normal RBC and muscle cell metabolism: exercise.
- Inadequate oxygen delivered to tissues.
- Increased rate of glycolysis: fever.
- Decreased rate of clearance or removal:
  - Liver, kidney damage.
- Mitochondrial damage from infections and inflammation:
  - $O_2$ radicals, TNF, cytokines, drugs, etc may be involved.
Clinical Uses for Blood Lactate Measurements: Old and New

- Monitoring during / after surgery:
  - open-heart surgery in neonates
  - adult cardiac operations with CP bypass

- Monitoring during ECMO.

- Triage use in Emergency Medicine:
  - trauma patients, chest pain patients
  - criteria for ICU admission.

- Detecting / monitoring metabolic alterations in sepsis and septic shock.
Interpretation of Blood Lactate Results

- ≤ 1.8 mmol/L: Normal adult at rest
- 2.0 - 4.0 mmol/L: Moderately elevated
- > 4.0 – 5.0 mmol/L: Seriously elevated?
- But the direction of change may be more important!
What Does a Blood Lactate Concentration Tell You Clinically?

- In many patients (surgery, trauma, with sepsis, respiratory distress, etc) an elevation may indicate a problem:
  - insufficient oxygen to tissues, inflammation, etc.
- In an emergency setting with multiple patients to treat:
  - Which patient is sicker?
    » Which patients can wait for treatment?
    » Which patients need immediate care?
- Is what you are doing making the patient better or worse?
General Format for Using Blood Lactate Measurements

- Measure lactate right away:
  - Lactate normal: GOOD
  - Lactate slightly elevated: Investigate cause; initiate therapy
  - Lactate markedly elevated: Consider more aggressive therapy

- Measure lactate every 3-6 hours:
  - Lactate decreasing: GOOD
  - Lactate staying the same: Increase level of therapy
  - Lactate rising: BAD – Consider most aggressive therapy

- Evaluate after 24 hours:
  - Lactate normal or close to normal: GOOD
  - Lactate still clearly elevated: Consider more aggressive therapy
Blood Lactate in Pediatric Cardiac Surgery
Blood Lactate Following Pediatric Cardiac Surgery

Timing of measurements:
- Blood lactates are measured after surgery, then every 4-8 hrs after as necessary during recovery.

Interpretation:
- Post-surgery lactate of $\geq 4$ mmol/L generally indicates more intensive care will be needed.
- A definite rise in lactate at any time warrants immediate intervention.
- After 24 hours, lactate should be normalizing.
Pediatric Open-Heart Surgery: Closure of Ductus Arteriosus with Placement of Shunt from Aorta to Pulmonary Artery

A: Good post-op recovery.
B: Pulmonary edema noted.
C-D: CHF caused by excess shunt flow.
E: Operation to place smaller shunt.
F: Hypovolemia noted; fluids given.

Blood Lactate Use in ECMO
(Extracorporeal Membrane Oxygenation)
(ECLS = Extracorporeal Life Support)
ECMO = Extracorporeal Membrane Oxygenation
Interpretation of Blood Lactate Results During ECMO

- In questionable cases, lactate measurement can help determine if patient goes on ECMO or not (≥ 5 mmol/L).
- Lactate declining or remaining low during ECMO is good.
- If lactate increases or remains elevated:
  - may increase pump flow, blood volume, or hematocrit.
  - evaluate for cardiac problems.
  - consider changing to veno-arterial ECMO.

Blood Lactate in Adult Cardiopulmonary Bypass Surgery
Information Provided by Blood Lactate Measurements In Adult Cardiopulmonary Bypass (CABG) Surgery

Monitoring blood lactate evaluates the complex metabolic state of the patient recovering from cooling, hemodilution, anesthesia, vasoactive drugs, inflammation, coagulopathies, etc.
Principles of Evaluating an Elevated Lactate After Open-Heart Surgery

- If reperfusion is good, lactate should decline by 1-2 hours after surgery.
  - However, lactate declines slowly in some patients.
- If lactate remains elevated 1-2 hr after surgery:
  - Make sure cardiac output is good.
  - Make sure airways are clear.
  - Evaluate liver function
    - liver shutdown can diminish lactate removal.
  - Look for gut ischemia or peripheral ischemia.
Case 1: CABG Operation with No Complications
67 yo male; recent Myocardial Infarction

<table>
<thead>
<tr>
<th>Time</th>
<th>8:40</th>
<th>9:15</th>
<th>10:00</th>
<th>11:15</th>
<th>11:30</th>
<th>12:00</th>
<th>14:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI-O₂</td>
<td>0.40</td>
<td>0.40</td>
<td>0.70</td>
<td>0.70</td>
<td>0.21 (RA)</td>
<td>0.21</td>
<td>1.00</td>
</tr>
<tr>
<td>pO₂</td>
<td>108</td>
<td>101</td>
<td>210</td>
<td>280</td>
<td>180</td>
<td>45</td>
<td>120</td>
</tr>
<tr>
<td>%O₂ Hb</td>
<td>98.5</td>
<td>96.7</td>
<td>99.2</td>
<td>99.6</td>
<td>99.3</td>
<td>84.0</td>
<td>98.8</td>
</tr>
<tr>
<td>Hb</td>
<td>11.5</td>
<td>10.8</td>
<td>8.2</td>
<td>8.0</td>
<td>8.2</td>
<td>8.5</td>
<td>10.2</td>
</tr>
<tr>
<td>O₂ content</td>
<td>15.7</td>
<td>14.5</td>
<td>11.3</td>
<td>11.1</td>
<td>11.3</td>
<td>9.9</td>
<td>14.0</td>
</tr>
<tr>
<td>Lactate</td>
<td>1.2</td>
<td>0.9</td>
<td>1.5</td>
<td>2.5</td>
<td>3.8</td>
<td>4.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Patient on pump

Rise in lactate post-op is a relatively normal occurrence.
Case 2: CABG Patient With Post-Operative Complications

- 56 year old male underwent open-heart surgery for coronary artery bypass.
- Blood lactates were measured:
  - Lactate during surgery was 3.2 mmol/L.
  - 4 hr post-surgery lactate was 6.1 mmol/L.
- Several parameters were re-checked:
  - Cardiac output was good
  - No evidence of gut ischemia
  - No problems with breathing
  - Poor peripheral pulses were noted in leg.
Case: CABG Patient Post-Op (cont’d)

- Patient had an intra-aortic balloon pump inserted through femoral artery to increase cardiac output post-op.
  - Balloon pump may be constricting blood flow to leg.
- Balloon pump was removed from femoral artery.
- Lactate measured 2 hours later was 1.7 mmol/L (normalizing).
Use of Lactate in ED for Trauma and Hypovolemic Shock
Early Report on Value of Blood Lactate Measurements in Trauma Patients

- A study of 76 patients admitted to the ICU from either the OR or the ED found that the time needed to normalize blood lactate predicted survival rate of patients:
  - 100% (27 of 27) survival when lactate normalized in 24 hours.
  - 78% (21 of 27) survived when lactate normalized within 24-48 hours.
  - 14% (3 of 22) survived if lactate did not normalize by 48 hours.

Lactate As Predictor of Survival in Trauma Patients

67 PATIENTS

51 patients normalized lactate within 24 hrs

- 50 patients survived (98%)
- 1 patient died

16 patients did not normalize lactate within 24 hrs

- 13 patients survived (81%)
- 3 patients died

Dr AM Shah; Dept of Anesthesiology; Ganga Hospital; Coimbatore
Blood Lactate Is Also Helpful in ED for Treating Hypovolemic Shock

- For hypovolemic shock from:
  - Bleeding, dehydration, etc.
  - Cardiogenic shock

- If resuscitation attempts decrease lactate:
  - Continue on this course.

- If blood lactate stays the same or increases:
  - Look for other causes: sepsis, etc.
Sepsis
Lactate and Sepsis

- Lactate is associated with outcomes in sepsis.
- Initial lactate > 4.0 mmol/L can indicate especially poor prognosis.
- However, hyperlactatemia is observed in patients with and without shock.
  - May be from tissue hypoxia: hypovolemia, shock, vasoconstriction.
  - May be from mitochondrial dysfunction.
**New Definitions for Sepsis and Septic Shock**

- Sepsis starts as a systemic infection that leads to unregulated immune and inflammatory responses that can cause life-threatening organ dysfunction.
  - Sepsis is common in the ED.
  - SOFA score often 3 or above.

- Septic Shock defined as:
  - Sepsis with especially profound circulatory, cellular, and metabolic abnormalities (SOFA score often $\geq 9$).
  - Has persistently low arterial BP *after volume replacement* and requires vasopressors to maintain BP $\geq 65$ mmHg.
  - Blood lactate $>2$ mmol/L despite volume resuscitation.

- Cryptic Shock:
  - Severe sepsis with Lactate $>4.0$ mmol/L and systolic BP $>90$ mmHg.
What Are SOFA and qSOFA Criteria?
(quick Sepsis-related Organ Failure Assessment)

• SOFA score is related to organ status (4 points each):
  – Respiratory ($p_aO_2$ / FIO$_2$)
  – Mental (Glasgow coma score)
  – Liver (Bilirubin)
  – Coagulation (platelet count)
  – Kidneys (creatinine)

• qSOFA score can be used at bedside (1 point each):
  – Respiratory rate ≥ 22/min (or $pCO_2 < 32$ mmHg).
  – Altered mental acuity
  – Systolic BP ≤ 100 mmHg
Sepsis is a Diverse Syndrome
All these patients could have sepsis:

- 18 yo w/ meningococcemia, coagulopathy, and hypoxemia.
- 45 yo after visiting SE Asia w/ malaria, new-onset renal dysfunction, and hyperbilirubinemia.
- 85 yo w/ worsening mental status, diabetes, CHF, and decreased urine output.

Timeline of Events as Infection Progresses to Sepsis and Septic Shock (new definition)

Systemic Infection → SOFA criteria → Sepsis → Severe Sepsis → Septic Shock

- Intense Inflammatory Response
- Lactate
- BP, Lactate
- Organs begin to fail
- Mitochondria damaged

Early Goal Directed Therapy

SURVIVAL → DEATH

SIRS = Systemic Inflammatory Response Syndrome
MODS = Multiple Organ Dysfunction Syndrome
EARLY GOAL-DIRECTED THERAPY: RESULTS

In-Hospital Mortality

- Standard Therapy: 46.5% (n=133)
- EGDT: 30.5% (n=130)

P = 0.009

3- and 6-Hour Bundles in Goal Directed Therapy Protocol for Sepsis in the ED

- Do within 3-Hours to identify patients likely to have sepsis:
  - Order arterial or mixed venous lactate.
  - Order blood cultures: bacteria or virus.
    » Measuring procalcitonin may be helpful.
  - Administer broad spectrum antibiotics.
  - Give fluid bolus if hypotensive or lactate >4 mmol/L.
  - Order CBC, urinalysis, CAT scans, X-rays, etc as appropriate.

- Do within 6-Hours:
  - Administer vasopressors if BP is low and unresponsive to fluids.
  - Remeasure lactate; Adjust antibiotics if culture results available.

- Options if hypotension persists and/or lactate remains ≥ 4 mmol/L:
  - Give red cells to achieve $s_{cv}O_2 ≥ 70\%$ or $s_vO_2 ≥ 65\%$
  - Consider mechanical ventilation.
Blood Lactate as Predictor of Mortality in ED Patients with Sepsis

There Are Many Ways to Lose Your Mitochondria
By Drugs, Cytokines, Oxygen Radicals
## Increase in Lactate (mmol/L) in Blood Containing No Additive or Fluoride / Oxalate

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temp</th>
<th>Additive</th>
<th>Time</th>
<th>Mean increase in Lactate (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasma</td>
<td>4-23 °C</td>
<td>F / Ox</td>
<td>8 h</td>
<td>&lt; 0.03</td>
</tr>
<tr>
<td>plasma</td>
<td>RT</td>
<td>none</td>
<td>2 h</td>
<td>0.10</td>
</tr>
<tr>
<td>WB</td>
<td>RT</td>
<td>F / Ox</td>
<td>2 h</td>
<td>0.10</td>
</tr>
<tr>
<td>WB</td>
<td>ice</td>
<td>none</td>
<td>60 min</td>
<td>0.10</td>
</tr>
<tr>
<td>WB</td>
<td>RT</td>
<td>none</td>
<td>30 min</td>
<td>0.30 (~1%/min)</td>
</tr>
</tbody>
</table>

Lactate Changes in Heparinized Blood Gas Samples at Room Temp

Change in Lactate (mmol/L) vs. Time (minutes)
Production of Lactate from Pyruvate:
Directly Depends on Ratio of NADH/NAD⁺
Indirectly Depends on Supply of Oxygen

Blood

Glucose → 2 ATP → NAD⁺ → Ox Phos → 36 ATP → CO₂

Lots of ADP → Glycolysis

O₂ → Ox Phos

Pyruvate → Acetyl Co A → NADH → Ox Phos

Lactate diffuses into blood

Many factors in sepsis can affect mitochondria and Ox Phosphorylation
Summary of Issues with Blood Lactate Measurements

● There are several mechanisms that elevate lactate.

● Recommendation to monitor lactate testing in EGDT has markedly increased test usage.

● Lactate is becoming a marker for overall mitochondrial damage.

● When to measure and how to interpret?
  – Well established for peds open-heart, ECMO, sepsis, triage in ED.
  – Increased usage in adult open-heart surgery.
## Potential Areas for POC or Lab Measurements of Lactate

<table>
<thead>
<tr>
<th>Location</th>
<th>TA-Time Needed</th>
<th>POC</th>
<th>Near Pt Lab</th>
<th>Central Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Dept.</td>
<td>&lt; 30 min</td>
<td>ED very chaotic (variable by hospital)</td>
<td>YES ($)</td>
<td>May be acceptable</td>
</tr>
<tr>
<td>Open-Heart Surgery</td>
<td>5-15 min</td>
<td>YES</td>
<td>YES ($)</td>
<td>NO</td>
</tr>
<tr>
<td>ECMO</td>
<td>5-30 min</td>
<td>YES (but low test #'s)</td>
<td>YES ($)</td>
<td>May be acceptable</td>
</tr>
<tr>
<td>Sepsis</td>
<td>60 min</td>
<td>YES (but many areas to cover)</td>
<td>YES ($)</td>
<td>May be acceptable</td>
</tr>
</tbody>
</table>

($) = Other tests and test volumes necessary to justify a near-patient laboratory.
Lactate Testing at Duke Medical Center

Lactate added to BG Analyzers (Lab/CVORs)

Shock Panel added at Request of ED

Fiscal Year

Test Volume / FY

FY 94-5
FY 96-7
FY 98-9
FY 00-1
FY 02-3
FY 04-5
FY 06-7
FY 07-8
FY 08-9
FY 09-10
FY 15-16
Thank you for your attendance and attention!