Use of Blood Lactate Measurements in the Critical Care Setting

John G Toffaletti, PhD Director of Blood Gas and Clinical Pediatric Labs Professor of Pathology Duke University Medical Center Chief, VAMC Clinical Chemistry Lab Durham, NC email: john.toffaletti@duke.edu

- The biochemical mechanisms and clinical processes that can increase blood lactate.
- The clinical implications of an increased blood lactate in surgery, ECMO, in the ED, and in sepsis.
- The general timing sequence of lactate measurements for monitoring patients in critical care.
- The stability of lactate in blood with and without stabilizers.
- When and where POC measurements of blood lactate are useful.

Lactate Testing at Duke Medical Center

Production of Lactate from Pyruvate: Directly Depends on Ratio of NADH/NAD⁺ Indirectly Depends on Supply of Oxygen

The Production of Lactate from Pyruvate Actually Consumes Acid

See: "Biochemistry of Exercise-Induced Metabolic Acidosis". Am J Physiol Integr Comp Physiol 2004; 287: R502-R516

What Processes Can Elevate Blood Lactate?

- Normal RBC and muscle cell metabolism: exercise.
- Inadequate oxygen delivered to tissues. Sepsis
- Increased rate of glycolysis: fever. Sepsis
- Decreased rate of clearance or removal:
 - Liver, kidney damage.

- Mitochondrial damage from infections and sepsis inflammation:
 - O₂ radicals, TNF, cytokines, drugs, etc may be involved.

Clinical Uses for Blood Lactate Measurements: Old and New

- Monitoring during / after surgery:
 - open-heart surgery in neonates
 - adult cardiac operations with CP bypass
- Monitoring during ECMO.
- Triage use in Emergency Medicine:
 - trauma patients, chest pain patients
 - criteria for ICU admission.
- Detecting / monitoring metabolic alterations in sepsis and septic shock.

Interpretation of Blood Lactate Results

- < 1.8 mmol/L: Normal adult at rest
 </p>
- 2.0 4.0 mmol/L: Moderately elevated
- > 4.0 5.0 mmol/L: Seriously elevated?
- But the direction of change may be more important!

What Does a Blood Lactate Concentration Tell You Clinically?

- In many patients (surgery, trauma, with sepsis, respiratory distress, etc) an elevation may indicate a problem:
 - insufficient oxygen to tissues, inflammation, etc.
- In an emergency setting with multiple patients to treat:
 - Which patient is sicker?
 - » Which patients can wait for treatment?
 - » Which patients need immediate care?
- Is what you are doing making the patient better or worse?

General Format for Using Blood Lactate Measurements

Measure lactate right away:

- Lactate normal: GOOD
- Lactate slightly elevated: Investigate cause; initiate therapy
- Lactate markedly elevated: Consider more aggressive therapy
- Measure lactate every 3-6 hours:
 - Lactate decreasing: GOOD
 - Lactate staying the same: Increase level of therapy
 - Lactate rising: BAD Consider most aggressive therapy
- Evaluate after 24 hours:
 - Lactate normal or close to normal: GOOD
 - Lactate still clearly elevated: Consider more aggressive therapy

Blood Lactate in Pediatric Cardiac Surgery

Blood Lactate Following Pediatric Cardiac Surgery

Timing of measurements:

- Blood lactates are measured after surgery, then every 4-8 hrs after as necessary during recovery.
 Interpretation:
- Post-surgery lactate of <u>></u> 4 mmol/L generally indicates more intensive care will be needed.
- A definite rise in lactate at any time warrants immediate intervention.
- After 24 hours, lactate should be normalizing.

Pediatric Open-Heart Surgery: Closure of Ductus Arteriosus with Placement of Shunt from Aorta to Pulmonary Artery

Scand J Clin Lab Invest 1995; 55: 301

Blood Lactate Use in ECMO

(Extracorporeal Membrane Oxygenation)

(ECLS = Extracorporeal Life Support)

ECMO = Extracorporeal Membrane Oxygenation

Interpretation of Blood Lactate Results During ECMO

- In questionable cases, lactate measurement can help determine if patient goes on ECMO or not (> 5 mmol/L).
- Lactate declining or remaining low during ECMO is good.
- If lactate increases or remains elevated:
 - may increase pump flow, blood volume, or hematocrit.
 - evaluate for cardiac problems.
 - consider changing to veno-arterial ECMO.

Blood Lactate in Adult Cardiopulmonary Bypass Surgery Information Provided by Blood Lactate Measurements In Adult Cardiopulmonary Bypass (CABG) Surgery

> Monitoring blood lactate evaluates the complex metabolic state of the patient recovering from cooling, hemodilution, anesthesia, vasoactive drugs, inflammation, coagulopathies, etc.

Principles of Evaluating an Elevated Lactate After Open-Heart Surgery

- If reperfusion is good, lactate should decline by 1-2 hours after surgery.
 - However, lactate declines slowly in some patients.
- If lactate remains elevated 1-2 hr after surgery:
 - Make sure cardiac output is good.
 - Make sure airways are clear.
 - Evaluate liver function
 - » liver shutdown can diminish lactate removal.
 - Look for gut ischemia or peripheral ischemia.

Case 1: CABG Operation with No Complications 67 yo male; recent Myocardial Infarction

Time	8:40	9:15	10:00	11:15	11:30	12:00	14:00
FI-O ₂	0.40	0.40	0.70	0.70	0.21 (RA)	0.21	1.00
pO ₂	108	101	210	280	180	45	120
%O ₂ Hb	98.5	96.7	99.2	99.6	99.3	84.0	98.8
Hb	11.5	10.8	8.2	8.0	8.2	8.5	10.2
O ₂ content	15.7	14.5	11.3	11.1	11.3	9.9	14.0
Lactate	1.2	0.9	1.5	2.5	3.8	4.6	2.5
					\wedge		

Patient on pump

Rise in lactate post-op is a relatively normal occurrence.

Case 2: CABG Patient With Post-Operative Complications

- 56 year old male underwent open-heart surgery for coronary artery bypass.
- Blood lactates were measured:
 - Lactate during surgery was 3.2 mmol/L.
 - -4 hr post-surgery lactate was 6.1 mmol/L.
- Several parameters were re-checked:
 - Cardiac output was good
 - No evidence of gut ischemia
 - No problems with breathing
 - Poor peripheral pulses were noted in leg.

Case: CABG Patient Post-Op (cont'd)

- Patient had an intra-aortic balloon pump inserted through femoral artery to increase cardiac output post-op.
 - Balloon pump may be constricting blood flow to leg.
- Balloon pump was removed from femoral artery.
- Lactate measured 2 hours later was 1.7 mmol/L (normalizing).

Use of Lactate in ED for Trauma and Hypovolemic Shock

Early Report on Value of Blood Lactate Measurements in Trauma Patients

 A study of 76 patients admitted to the ICU from either the OR or the ED found that the time needed to normalize blood lactate predicted survival rate of patients:

- 100% (27 of 27) survival when lactate normalized in 24 hours.
- 78% (21 of 27) survived when lactate normalized within 24-48 hours.
- 14% (3 of 22) survived if lactate did not normalize by 48 hours.

Abramson, et al: J Trauma 1993; 35: 584-589.

Lactate As Predictor of Survival in Trauma Patients

Dr AM Shah; Dept of Anesthesiology; Ganga Hospital; Coimbatore

Blood Lactate Is Also Helpful in ED for Treating Hypovolemic Shock

For hypovolemic shock from:

Bleeding, dehydration, etc.
Cardiogenic shock

If resuscitation attempts decrease lactate:

Continue on this course.

If blood lactate stays the same or increases:

Look for other causes: sepsis, etc.

Lactate and Sepsis

- Lactate is associated with outcomes in sepsis.
- Initial lactate > 4.0 mmol/L can indicate especially poor prognosis.
- However, hyperlactatemia is observed in patients with and without shock.
 - May be from tissue hypoxia: hypovolemia, shock, vasoconstriction.
 - May be from mitochondrial dysfunction.

New Definitions for Sepsis and Septic Shock

- Sepsis starts as a systemic infection that leads to unregulated immune and inflammatory responses that can cause life-threatening organ dysfunction.
 - Sepsis is common in the ED.
 - SOFA score often 3 or above.
- Septic Shock defined as:
 - Sepsis with especially profound circulatory, cellular, and metabolic abnormalities (SOFA score often <u>></u> 9).
 - Has persistently low arterial BP after volume replacement and requires vasopressors to maintain BP <u>></u>65 mmHg.
 - Blood lactate >2 mmol/L despite volume resuscitation.
- Cryptic Shock:
 - Severe sepsis with Lactate > 4.0 mmol/L and systolic BP > 90 mmHg.

What Are SOFA and qSOFA Criteria? (quick Sepsis-related Organ Failure Assessment)

SOFA score is related to organ status (4 points each:

- Respiratory (p_aO_2 / FIO_2)
- Mental (Glasgow coma score)
- Liver (Bilirubin)
- Coagulation (platelet count)
- Kidneys (creatinine)

• qSOFA score can be used at bedside (1 point each):

- Respiratory rate \geq 22/min (or ρ CO₂ < 32 mmHg).
- Altered mental acuity
- Systolic BP <u><</u>100 mmHg

Sepsis is a Diverse Syndrome All these patients could have sepsis:

- 18 yo w/ meningococcemia, coagulopathy, and hypoxemia.
- 45 yo after visiting SE Asia w/ malaria, new-onset renal dysfunction, and hyperbilirubinemia.
- 85 yo w/ worsening mental status, diabetes, CHF, anddecreased urine output.

From JAMA 2016; 315(8): 757-9.

Timeline of Events as Infection Progresses to Sepsis and Septic Shock (new definition)

SIRS = Systemic Inflammatory Response Syndrome MODS = Multiple Organ Dysfunction Syndrome

EARLY GOAL-DIRECTED THERAPY: RESULTS

In-Hospital Mortality

3- and 6-Hour Bundles in Goal Directed Therapy Protocol for Sepsis in the ED

Do within 3-Hours to identify patients likely to have sepsis:

- Order arterial or mixed venous lactate.
- Order blood cultures: bacteria or virus.
 - » Measuring procalcitonin may be helpful.
- Administer broad spectrum antibiotics.
- Give fluid bolus if hypotensive or lactate >4 mmol/L.
- Order CBC, urinalysis, CAT scans, X-rays, etc as appropriate.
- Do within 6-Hours:
 - Administer vasopressors if BP is low and unresponsive to fluids.
 - Remeasure lactate; Adjust antibiotics if culture results available.
- Options if hypotension persists and/or lactate remains <u>></u> 4 mmol/L:
 - Give red cells to achieve $s_{cv}O_2 \ge 70\%$ or $s_vO_2 \ge 65\%$
 - Consider mechanical ventilation.

Blood Lactate as Predictor of Mortality in ED Patients with Sepsis

Shapiro NI, et al. Ann Emerg Med 2005; 45: 524-528.

There Are Many Ways to Lose Your Mitochondria By Drugs, Cytokines, Oxygen Radicals

Increase in Lactate (mmol/L) in Blood Containing No Additive or Fluoride / Oxalate

Mean increase

<u>Sample</u>	<u>Temp</u>	Additive	<u>Time</u>	in Lactate (mmol/L)
plasma	4-23 °C	F/Ox	8 h	< 0.03
plasma	RT	none	2 h	0.10
WB	RT	F/Ox	2 h	0.10
WB	ice	none	60 mir	n 0.10
WB	RT	none	30 mir	n 0.30 (~1%/min)

From Westgard, Clin Chem 1972; Toffaletti, Clin Chem 1992; and Astles, Clin Chem 1994

Lactate Changes in Heparinized Blood Gas Samples at Room Temp

Production of Lactate from Pyruvate: Directly Depends on Ratio of NADH/NAD⁺ Indirectly Depends on Supply of Oxygen

Summary of Issues with Blood Lactate Measurements

- There are several mechanisms that elevate lactate.
- Recommendation to monitor lactate testing in EGDT has markedly increased test usage.
- Lactate is becoming a marker for overall mitochondrial damage.
- When to measure and how to interpret?
 - Well established for peds open-heart, ECMO, sepsis, triage in ED.
 - Increased usage in adult open-heart surgery.

Potential Areas for POC or Lab Measurements of Lactate

Location	TA-Time Needed	POC	Near Pt Lab	Central Lab
Emergency Dept.	< 30 min	ED very chaotic (variable by hospital)	YES (\$)	May be acceptable
Open-Heart Surgery	5-15 min	YES	YES (\$)	NO
ECMO	5-30 min	YES (but low test #'s)	YES (\$)	May be acceptable
Sepsis	60 min	YES (but many areas to cover)	YES (\$)	May be acceptable

(\$) = Other tests and test volumes necessary to justify a near-patient laboratory.

Lactate Testing at Duke Medical Center

Test Volume / FY

Thank you for your attendance and attention!