FDA Regulation of Blood Glucose Monitoring Systems

March 2014

Leslie Landree, Ph.D.
Division of Chemistry and Toxicology Devices
Office of In Vitro Diagnostics and Radiological Health
Center for Devices and Radiological Health
Food and Drug Administration
Objectives

• Identify what information FDA evaluates to grant marketing clearance for blood glucose monitoring systems
• Explain the current performance criteria that blood glucose monitoring systems must meet
• Discuss who the intended users of blood glucose monitoring systems are, and why they are not intended to be used by everyone
FDA Regulation of Medical Devices

- Risk based regulation by intended use
 - Class I - low risk, usually exempt from Premarket review
 - Class II - moderate risk, requires “substantial equivalence” to predicate device (510(k) clearance)
 - Class III – high risk and novel intended uses, require premarket approval (PMA)
510(k) Premarket Review of Blood Glucose Meters

- Class II devices (moderate risk)
- Require 510(k) clearance prior to marketing
- The bar for clearance is the demonstration of Substantial Equivalence (SE) to a legally marketed predicate
- Not an independent evaluation of the device - data submitted to support SE is generated by the sponsor
User Populations

• Diabetics at home

• Healthcare settings
 – Hospitals
 – Nursing homes
 – Physician’s offices
 – Emergency Departments
 – Emergency Response Units
Intended User Population

- Manufactures typically seek clearance for OTC use
- Designed and validated for OTC use
- Healthcare professional use not evaluated
Draft Guidance Documents

Published January 7, 2014

• Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use

• Blood Glucose Monitoring Test Systems for Prescription Point-of-Care Use

Comment period ends April 6, 2014
Draft Guidance Documents

• These guidances are:
 – A description of FDA’s current thinking on the information manufacturers should submit to FDA for future glucose meter submissions
 – Draft

• These guidances are NOT:
 – Guidelines or rules for how hospitals, Health Care Professionals (HCPs), or patients should use glucose meters
 – Rules for how laboratories should validate glucose meters
 – Retroactive
 – Final
Evaluation of Blood Glucose Monitoring Systems

- Intended Use
- **Accuracy**
- Precision
- Linearity
- **Interferences**
- Cleaning and Disinfection
- Environmental
- Software
- **Flex Studies**
- **Test strip manufacturing lot release criteria**
Blood Glucose Monitoring Test Systems for Prescription Point-of-Care Use (BGMS)

• Meant to address only those systems intended for prescription POC use in professional healthcare settings

• Not meant to address those blood glucose monitoring systems intended for OTC use by lay persons at home
BGMS Performance - *Accuracy*

- User evaluation - accuracy in the hands of intended users

- Studies should represent actual use claimed with subjects that accurately reflect the intended use population

- 350 samples spanning measuring range for each claimed sample type/matrix (e.g. arterial, venous, capillary whole blood)

- Additional 50 high and 50 low samples (may be contrived)
BGMS Performance - **Accuracy**

- Neonatal (<28 days old)
 - 100 to 150 fresh neonatal capillary blood samples compared to reference
BGMS - **Accuracy Criteria**

- 99% of results are within:
 - +/- 10% of the reference method for glucose concentrations > 70 mg/dL and
 - +/- 7 mg/dL at <70 mg/dL

- 100% of results are within:
 - +/- 20% of the reference method for samples >70 mg/dL and
 - +/- 15 mg/dL <70 mg/dL.

- Outliers should be specifically addressed by manufactures in the pre-market submission.
Complexity and CLIA Waiver (BGMS)

• Prescription-use is not automatically waived

• Manufacturers will need to seek CLIA waiver

• Importance of waiver to point-of-care users

• Designed studies in the guidance to support both clearance and waiver
BGMS Performance

Potential Interferences

- Should evaluate the effect of potentially interfering endogenous and exogenous substances and conditions (e.g. lipemia, common medications, varying hematocrit levels, etc.)

- Ascorbic acid, dopamine, L-dopa, methyl-dopa, tryglycerides, uric acid, xylose
BGMS Performance

Potential Interferences

• Hematocrit
 – Span claimed hematocrit range, compare to reference
 – Minimum claimed range of 10-65%
BGMS Performance

Potential Interferences

• Oxygen
 – Span claimed blood oxygen range at various glucose concentrations
 – Minimum claimed range of 40-200 mmHg
Infection Control

• Not different from what manufactures are currently doing

• Validation studies differ mainly in the number of cleaning and disinfection cycles - should be representative of the amount of cleaning and disinfection that the meter will be exposed to in its use life (typically 3-5 year use life)

• Include validated cleaning and disinfection instructions in the labeling
BGMS Flex Studies

• Demonstrate that the BGMS device design is robust (e.g., insensitive to environmental and usage variation) and that all known sources of error are effectively controlled

• Design test systems to incorporate fail-safe mechanisms whenever technically practicable (e.g. lock-out functions)
Flex Study Examples

- Test strip stability testing
- Temperature and humidity effects
- Altitude effects
- Short sample detection
- Sample perturbation study
- Intermittent sampling
- Used test strips
- Mechanical Vibration Testing
- Shock testing
- Electromagnetic compatibility (EMC) Testing
- Electrostatic Discharge/Electromagnetic Interference Testing
Test Strip Lot Release Criteria

• Test strip lot release criteria should be sufficient to ensure consistent quality of the test strips

• Manufacturers provide a description of the lot release criteria and a summary of the sampling scheme in the pre-market submission
Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use (SMBG)

- Meant to address only those blood glucose monitoring systems intended for use by lay-users at home

- Not meant to address blood glucose monitoring systems intended for use in prescription point-of-care settings
SMBG Performance - **Accuracy**

- User evaluation - accuracy in the hands of intended users

- 350 samples spanning measuring range for each claimed sample type (e.g. fingerstick, palm, thigh)

- Additional 50 high and 50 low samples (may be contrived)
SMBG - **Accuracy Criteria**

- 95% within 15% and 99% within 20% of the reference

- Outliers should be specifically addressed by manufacturers in the pre-market submission

- Claimed measuring range should minimally span 50 – 400 mg/dL glucose
SMBG Performance

Potential Interferences

• Same study design – common endogenous and exogenous substances

• Hematocrit
 - Claimed hematocrit range of 20-60% (ideal)
 - Minimum claimed range 30-55% hematocrit
SMBG Performance

• Infection control validation – based on expected use and use life of the device

• Flex studies

• Test strip manufacturing lot release criteria
Labeling

• **Prominent warning on the outer SMBG box labeling and package insert**
 – Not for use in healthcare settings
 – Use of this device on multiple patients may lead to transmission of blood borne pathogens

• Performance description on outer box label
 – Currently no way for users distinguish meters
 – Labeling aimed at allowing better meters to have better labels – so people and their healthcare professionals can choose the best meter for their needs
Thank you

Questions?

leslie.landree@fda.hhs.gov