Coagulation Testing
at the Point of Care

Marcia L. Zucker, Ph.D.
ZIVD LLC
Objectives

- Explain why ACT target times are system specific
- Determine how to choose between aPTT and ACT for heparin monitoring
- Discuss the differences in clinical application between POC and lab PT/INR tests
Coagulation Testing

- Monitoring hemostasis

Bleeding Clotting
Coagulation Testing

Extrinsic Pathway

Common Pathway

Intrinsic Pathway

WARFARIN

LMWH & DXaI

Hirudin & DTI

CLOT

Monitor with ACT / aPTT

Monitor with PT

Monitor with ???

Monitor with ???
What is Heparin?

- Glucopolysaccharide
- MW range: 6,000 - 25,000 daltons
- Only ~1/3 molecules active
 - Must contain specific sequence of glucosaccharides to function
Heparin Effects on Coagulation

Heparin + AT → Prekallikrein → Kallikrein → Fibrinolysis

Heparin + AT → Plasminogen Converted to Plasmin

Heparin + AT → Thrombin

Heparin Activity

Modified from Utley. Vol.1, 1982
Why Monitor Heparin?

- Potency varies by manufacturer
 - Potency varies by lot
- Dose response varies by patient
 - Half life ranges from 60 - 120 minutes
 - Non-specific binding
- Functions by accelerating action of antithrombin
 - Antithrombin level critical for appropriate response
How to Monitor Heparin?

- Laboratory measures of activity
 - α Factor Xa
 - α Factor IIa (thrombin)
 - No clear correlation between heparin activity and patient outcome
 - TAT generally too long for peri-procedural use

- Viscoelastography
 - TEG / ROTEM
 - Reflects entire coagulation process
 - Requires interpretation
 - TAT generally too long for peri-procedural use

- ACT
What is an ACT?

- Modified Lee-White clotting time
 - Add blood to glass tube, shake
 - Place in heat block
 - Visual clot detection

- First described in 1966 by Hattersley
 - Activated Clotting Time
 - Add blood to glass tube with dirt, shake
 - Diatomaceous earth activator
 - Place in heat block
 - Visual clot detection
 - Proposed for both screening for coagulation defects and for heparin monitoring
Activated Clotting Time

Intrinsic Pathway

Extrinsic Pathway

Common Pathway

CLOT
Why do we use an ACT?

- **Point of Care**
 - Immediate turn around
 - Rapidly adjust anticoagulant dosing as needed

- **Literature supports use of ACT**
 - Poor correlation between ACT & heparin level (1981)
 - Hemochron and HemoTec clinically different (1988)
 - Differences ignored by clinicians, yet…

- **Improved clinical outcome with ACT use**
 - Reviewed: 2007 NACB Laboratory medicine practice guideline for point of care coagulation testing
Why do ACTs Differ?

- Activator
 - diatomaceous earth; kaolin; glass beads; thromboplastin; combinations

- Sample measurement
 - Manual; automated

- Sample mixing
 - Manual; automated; physical; chemical

- Endpoint detection
 - Clot; surrogate marker

- By design!
HEMOCHRONOMETER

Later - HEMOCHRON

Add blood to tube, shake
 • Manual sample treatment

Place in test well
 • Automated heating
 • Mechanical, objective fibrin clot detection

Two different activators
 • CA510 (later FTCA510)
 • Diatomaceous earth
 • P214 glass bead
Two assays for separate uses

![Graph showing clotting time versus heparin concentration with labels for C-ACT and P214 assays and markers for ECMO, Dialysis, CATH, PTCA, CPB.]
1980’s

- **HemoTec ACT** (later Medtronics ACTII)
 - Add blood to dual cartridge
 - Liquid kaolin activator
 - Place in instrument
 - Automated mixing

- Results don’t match Hemochron

![Graph](image.png)
1990’s

- Microsample ACTs - Hemochron Jr
 - Add blood to sample well, press start
 - Automated sample measurement
 - Automated mixing
 - Objective clot detection

- Results still don’t match
Abbott Point of Care - i-STAT

- Thrombin detection
 - Synthetic thrombin substrate
 - Electro-active compound formed, detected amperometrically
 - Clotting time reported
- First non-mechanical clot detection
- Direct chemical assessment of the appearance of active thrombin
Where is an ACT Used?

- Cardiac surgery
 - Recommended as 1° method in AmSECT guidelines
- Percutaneous coronary intervention (PCI)
- Interventional cardiology
- ECMO
- Critical care
- Interventional radiology
- Electrophysiology
- Vascular surgery
- etc.
Dosing & Target Times

- "Standard" target times
 - Most developed with manual ACT
 - Suggested due to high variability
 - No evidence for optimal ACT targets

- Drug defined targets
 - GPIIb/IIIa Inhibitors; Angiomax
 - Drug manufacturer defines ACT target
 - Does not specify ACT type
 - Ignores "off-label" indications
How to Compare ACTs?

- Clinical Correlation
 - In clinical setting to be used
 - Do not compare in CVOR to change in cath lab
 - Data MUST span current target times
 - Correlation coefficient
 - $R \geq 0.88$

CORRELATE DOES NOT MEAN MATCH
Clinical Comparison

- Data used to predict new target time
- Clinical agreement determined from predicted target time
 - Only method of value in ECMO, sheath pull
 - Range of values too small for correlation analysis
Evaluate Clinical Agreement

CVOR example

<table>
<thead>
<tr>
<th>Current</th>
<th>New</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 480</td>
<td>≥ 520</td>
<td>72</td>
<td>34%</td>
</tr>
<tr>
<td>≥ 480</td>
<td>< 520</td>
<td>19</td>
<td>9%</td>
</tr>
<tr>
<td>< 480</td>
<td>≥ 520</td>
<td>7</td>
<td>3%</td>
</tr>
<tr>
<td><480</td>
<td><520</td>
<td>117</td>
<td>54%</td>
</tr>
</tbody>
</table>

88% agreement
- 21 of 26 discrepancies
 - Current value within 10% of 480
- 5 of 26 discrepancies
 - New leads to additional heparin given
Help clinician overcome differences

Source:
- Reagent differences
- Technology differences
- No standardization

Alter target times to Maintain clinical protocols
Extrinsic Pathway

Common Pathway

Intrinsic Pathway

HEPARIN

WARFARIN

LMWH & DXaI

Hirudin & DTI

Monitor with ACT / aPTT

Monitor with PT

Monitor with ???

CLOT

X → Xa

II → IIa (thrombin)
ACT versus aPTT

- **ACT**
 - Activated clotting time
 - POC Only
 - Low, moderate or high dose heparin
 - System dependent

- **aPTT**
 - Activated partial thromboplastin time
 - Laboratory or POC
 - Low dose heparin only
 - System dependent upper limit
aPTT test methods

- **Standard Laboratory**
 - Platelet Poor Plasma
 - Sodium Citrate Anticoagulant
 - Dilution in testing
 - Variable Preanalytical Delay
 - Instruments
 - Reagents

- **Point of Care**
 - Whole Blood
 - No Added Anticoagulant
 - No Dilution
 - No Preanalytical Delay
 - Instruments
 - Reagents
Correlate Does Not Mean Match

\[y = 0.737x + 22.2 \]
\[R = 0.920 \]
Extrinsic Pathway

Common Pathway

Intrinsic Pathway

LMWH & DXaI

Hirudin & DTI

Monitor with ACT / aPTT

Monitor with PT

Monitor with ???

CLOT
Heparin versus Warfarin

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of Action</th>
<th>Cofactor</th>
<th>Monitor</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heparin</td>
<td>Direct thrombin inhibition</td>
<td>Anti-thrombin</td>
<td>aPTT ACT</td>
<td>Immediate</td>
</tr>
<tr>
<td>Warfarin</td>
<td>Decrease factor production</td>
<td>Vitamin K</td>
<td>PT</td>
<td>3-5 day delay</td>
</tr>
</tbody>
</table>
What is Warfarin?

- Rat poison
- Cause of “sweet clover disease”
- Orally active anticoagulant
Warfarin Effects on Coagulation

Anticoagulant action of warfarin: Slow onset

1. KO-reductase — warfarin sensitive
2. K-reductase — relatively warfarin resistant

Why Monitor Warfarin?

- Potency may vary by manufacturer
- Dose response varies by patient
 - Dietary interactions
 - Life-style influences
- Functions by decreasing production of Vitamin K dependent clotting factors in liver
 - Delayed onset of anticoagulation
How to monitor warfarin?

- Quick, et. al., 1937 – Prothrombin Time
 - Combine thromboplastin, calcium and patient plasma
 - Measures activity of factors I, II, V, VII, X

- 40 – 50 years pass
 - Thromboplastin isolated from:
 - Different species
 - pig; cow; human; etc.
 - Different organs
 - brain; thymus; lung; etc.
 - All yield different results
 - Results vary by instrument system in use
 - Manual tilt tube “gold standard”
 - Fibrometer; automated coagulation systems
 - PT ratios adopted to determine therapeutic range
INR

- 1983 – WHO and ISTH recommend the use of the INR to standardize PT result reporting

International Normalized Ratio (INR)

- ISI = international Sensitivity Index
- INR target ranges are specified by patient populations, e.g.,
 - DVT, Afib, Atrial MHV: INR= 2.0 - 3.0
 - Mitral mechanical heart valve: INR= 2.5 – 3.5
 - Individual variation

\[
INR = \left(\frac{PT_{patient}}{PT_{meannormal}} \right)^{ISI}
\]
Key variables

- **ISI**
 - Initially determined by reagent manufacturer
 - Traceable to IRP
 - International Reference thromboplastin Preparation
 - WHO defined process
 - Calibration up to INR = 4.5
 - manual tilt tube method reference
 - Local calibrations can be performed to determine the instrument specific ISI\(^1\)

- **Mean normal PT**
 - The mean normal PT should be determined for each new batch of thromboplastin with the same instrument used to assay the PT\(^1\)

Effect of Local Calibration

- Local calibration may introduce variability

- Same sample yields different results depending on calibration method

POC Calibration

- Manufacturer assigns ISI and mean normal PT (MNPT)
 - Lot specific

- Traceable to IRP
 - Often through secondary standard

- Cannot be changed by end user
 - Does not vary by location of testing
Will POC Results Match the Lab?

but it WILL Correlate
Why not?

- **Point of Care**
 - Whole Blood
 - No Added Anticoagulant
 - No Dilution
 - No Preanalytical Delay
 - Reagent
 - Instrument
 - Clot detection

- **Laboratory**
 - Platelet Poor Plasma
 - Sodium Citrate Anticoagulant
 - 1:9 Dilution
 - Variable Preanalytical Delay
Correlation by lab system

<table>
<thead>
<tr>
<th>Thromboplastin</th>
<th>Analyzer</th>
<th>calibration</th>
<th>Thromboplastin</th>
<th>Analyzer</th>
<th>calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovin</td>
<td>CA1500</td>
<td>Local vs rTF/95</td>
<td>HepatoQuick</td>
<td>STA-R</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>Recombiplastin</td>
<td>MLA1800</td>
<td>Local vs rTF/95</td>
<td>Thrombotest</td>
<td>KC10</td>
<td>Local vs OBT/79</td>
</tr>
<tr>
<td>Neoplastin Plus</td>
<td>STA-R</td>
<td>Manufacturer</td>
<td>Thromboplastin C Plus</td>
<td>CA1500</td>
<td>Manufacturer</td>
</tr>
</tbody>
</table>
Expectations Lab to Lab

- 10 OAT patients across 7 analyzer/reagent combinations
Expectations POC to lab

- 36 patients over 4 visits each
 - 3 POC; 1 lab
Variability of Lab INR

- Observed:
 - ± 0.4 at INR = 2.0
 - ± 0.8 at INR = 3.0
 - ± 1.2 at INR = 4.0

- Standardization as with glucose is unlikely
 - discrete analyte to be tested
 - versus a biologic process

Patient Management

1. Understand limitations in the INR
 Whenever a patient undergoes duplicate testing on different systems, there is the potential for disagreement

2. Attempt to have patients managed with a consistent methodology

How to Compare INR Results

- Lower dose?
- Keep same dose?
- Raise Dose?
- Test Again?
- Test more often?
Why perform POC PT?

- Results Available While Patient is Present
 - Improved Anticoagulation Management
 - Improved Standard of Care
 - Staff Efficiency

- Immediate Retesting (if needed)
 - Fingerstick Sampling
LIMITATION!!!!!!!

- INR was developed to monitor effect of vitamin K antagonists (warfarin, others).
- INR is inappropriate scale for monitoring coagulopathies.
- Most POC PT/INR tests cleared ONLY for monitoring patients receiving oral anticoagulation therapy such as Coumadin or warfarin.
POC Coagulation Testing

- Monitoring hemostasis

Bleeding

Clotting