Developing and Maintaining a POCT Program

James H. Nichols, Ph.D., DABCC, FACB
Professor of Pathology, Microbiology and Immunology
Medical Director, Clinical Chemistry
Vanderbilt University School of Medicine
Nashville, Tennessee

james.h.nichols@vanderbilt.edu
Objectives

• Define POCT
• Examine quality concerns with POCT
• Discuss the role of a POCT program in maintaining quality
• Offer tips for managing POCT
• Reviewing resources for POC Coordinators
POCT Definition

• Clinical laboratory testing conducted close to the site of patient care, typically by clinical personnel whose primary training is not in the clinical laboratory sciences or by patients (self-testing).

• POCT refers to any testing performed outside of the traditional, core or central laboratory.

Point of Care Testing

• Advantages
 – Immediate results - no lab transportation
 – Small blood volume
 – Wide menu of tests available
 – Whole blood and other samples available
 – Works within clinical patient flow

• Disadvantages
 – More expensive than traditional laboratory tests
 – Quality is questionable as anyone can run the analysis
 – Difficulties with regulatory compliance and documentation
 – Lack of appreciation for preanalytic, analytic, postanalytic issues
 – Compliance issues with billing and charge capture
The POCT Market

1998
- US$ 4.9 Billion world-wide
- 25% of IVD testing market
- Projected annual growth of 12%

Hospital POCT

Blood Glucose

2003
- US$ 6.8 Billion world-wide
- 33% of IVD testing market

Professional

Home Testing

Stephans EJ. Developing Open Standards for Connectivity IVD Technology 1999;5:22,25

Projected POCT Market

2008

US$ 13.1 Billion world-wide
Decreased glucose growth (managed care, price discounts)
Increase IA and molecular POC
6% annual growth, glucose <5%

Central Lab (69%)
POCT (31%)

2015

US$ 20.2 Billion world-wide
Central Lab growth in select areas of molecular, flow cytometry, AP keeps pace with POC growth

Central Lab (69%)
POCT (31%)

CLIA Laboratory Certificates
June 2012 (225,879 Labs)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance (International)</td>
<td>19,354</td>
<td>8.6%</td>
</tr>
<tr>
<td>Waiver</td>
<td>153,568</td>
<td>68.0%</td>
</tr>
<tr>
<td>PPMP</td>
<td>37,299</td>
<td>16.5%</td>
</tr>
<tr>
<td>Accreditation (International)</td>
<td>15,658</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

16 (0.01%)
Point-of-Care Testing
Quality Issues

• Complaints about SMBG devices represent the largest number filed with the FDA for any medical device (by 1993, over 3200 incidents, including 16 deaths).

• Poorly maintained urinometers and blood gas analyzers can act as an infectious reservoir for resistant microbes.

• Nine patients at two nursing facilities in Southern California were diagnosed with hepatitis B infection transmitted in association with blood glucose monitoring
CMS COW Lab Pilot Study

• 1999 Ohio and Colorado inspections found over 50% of labs had significant quality and 7 – 10% were testing beyond certificate

• 2001 CMS expanded pilot inspected 2.5% (436 waived and PPM labs) in 8 states:
 – 32% did not perform QC as required
 – 16% failed to follow manufacturers’ instructions
 – 7% did not perform calibration as required by the manufacturer
CMS COW Lab Pilot Study

• Of the waived labs, in addition:
 – 23% had certificate issues (change name, director, address)
 – 20% cut occult blood cards and urine dipsticks
 – 19% had personnel without training/competency evaluation
 – 9% did not follow manufacturer’s storage and handling instructions
 – 6% were using expired reagents/kits

DHHS Office of Inspector General Enrollment and Certification Processes in the CLIA Program. August 2001. OEI-05-00-00251
CMS COW Lab Follow-Up

• Lab consultation and education improve performance of laboratories during inspections
• CMS initiating on-site visits to 2% labs
• CMS listed 15 Professional Societies and groups that offer educational opportunities
• State-by-State revisits to original 8 pilots
 – Varying improvement 7/8 states (total 74% or 61/82 labs)
 – No improvement 26% (26/82 labs)
POCT is a Complex System

• Laboratory
 – One site
 – Limited instrumentation to perform bulk of testing
 – Limited staff, focused on same equipment daily
 – Staff trained in laboratory skills

• POCT
 – Dozens of sites, hundreds of devices and thousands of operators
 – Staff are clinically focused on patient not on equipment
 – Staff do not have laboratory training background
 – Testing delegated to lower level staff (TAs, MAs)
Develop a POCT Infrastructure

• The number of devices people and testing performed POCT in an institution requires an organization and management structure
• Many institutions have a POC Coordinator (often a lab staff) and POCT Committee to oversee practice
• POCT Committee can depersonalize the review process for test approval, inspection preparation and actions to deficiencies.
Why Do We Need a POCT Program?

• Organize the activities involving POCT
• Meet federal and accreditation regulations
• Identify what tests are conducted outside the formal core laboratory
• Approve/disapprove new test requests
• Determine who is performing POCT
• Document staff competency
• Manage POCT test results
POCT Committee

• Chair
• Lab – POC Coordinator
• Nursing – administration
• Purchasing
• Physician – user of POCT results
• Outpatient clinic representation
• Affiliate hospitals
• Other services involved – Pharmacy, Nutrition...
POCT Management

- Medical Director
 - POCT Coordinator
 - POCT Staff
 - POCT Staff
 - POCT Staff
 - Affiliate Hospitals and Clinics
 - POCT Staff
 - POCT Committee

POCT Coordinator

• Staff manager of overall POCT program
• The most important person next to the Medical Director in the POCT Program
• Ensures documentation meets regulatory compliance
• Maintains records of sites and testing
• Coordinates IT services for data transfer of results to medical record
• Keeps policies and procedures up-to-date
• Troubleshoots testing problems
POCT Management
Vanderbilt Medical Center

Vanderbilt POCT

Rehabilitation
Hillsboro Clinic
Ambulances
Helicopters
Williamson County Medical Center
Vanderbilt Medical Group Practices

Vanderbilt Medical Center
Vanderbilt Psychiatric Hospital
Children’s Hospital
One Hundred Oaks Clinic
<table>
<thead>
<tr>
<th>Department / Area / Clinic</th>
<th>#</th>
<th>Name of Accrediting/ Certifying Agency</th>
<th>Medical Director</th>
<th>D. Trainer</th>
<th>PHONE</th>
<th>Address</th>
<th>Test Performed</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FAMILY PRACTICE (First Floor)</td>
<td>20323XXXX</td>
<td>CLIA 44XXXX Exp. 7/1/13</td>
<td>Dr. Warren MD</td>
<td>Louis PC</td>
<td>555-1234</td>
<td>, TN. 37067</td>
<td>Flu, strep, Clinitek Status, urine pregnancy, Sure Step glucose Hemocue, Hemocult, PPM KOH, wet preps,</td>
<td>Loretta Lynn</td>
</tr>
<tr>
<td>2. PEDIATRIC CLINIC (Second Floor)</td>
<td>20311XXXX</td>
<td>CLIA 44XXXX Exp. 2/14/14</td>
<td>Dr. Miller MD</td>
<td>Kim Jones RN</td>
<td>555-2121</td>
<td></td>
<td>Clinitek Status Urine, DCA HgBA1C Advantage Sure Step, Glucose, Flu, Strep, Hemocult</td>
<td>Ms. Price</td>
</tr>
<tr>
<td>3. INTERNAL MEDICINE (Third Floor)</td>
<td>20322XXXX</td>
<td>CLIA 44XXXX Exp. 7/10/13</td>
<td>Dr. Smith MD</td>
<td>Ron Night</td>
<td>555-0102</td>
<td>TN 37067</td>
<td>Flu, strep, Clinitek Status, urine pregnancy, Sure Step glucose, Hemocult PPM KOH, wet preps</td>
<td>Jackie Chan</td>
</tr>
<tr>
<td>GI CLINIC (third floor)</td>
<td>20326XXXX</td>
<td>GI IM share lab CLIA</td>
<td>Dr. Jones MD</td>
<td>POCT</td>
<td>555-1212</td>
<td>Third Floor Franklin TN 37067</td>
<td>Hemocult</td>
<td>Lori Done</td>
</tr>
</tbody>
</table>
The POCT Committee

• Representation from laboratory, purchasing, medical staff, nursing, and IT services
• Approves new test requests
• Depersonalizes response – committee decision rather than single person/director
• Provides oversight of POCT management
• Reviews QC trends, ongoing test problems and ensures method is meeting clinical needs
• Ensures POCT is conducted in a safe manner
POCT Roles

• Nursing and Clinical Staff:
 – Ensure staff are trained/competent
 – Perform and document device QC
 – Rotate stock/destroy expired reagents
 – all other aspects of the day-to-day management of the testing process

• Laboratory:
 – Drafts procedures and training checklists
 – Validates new reagent/QC lots
 – Arranges for repair/replacement of devices
 – Provides technical, training, consultative and QI support of clinical staff and testing process
Tips to Simplify Regulatory Compliance

• Standardize instrumentation and methods across the health system
 – Minimizes number of different devices
 – One policy can be shared amongst sites
 – Central management system (ie oversight and data management)
 – Same methodology, clinical limitations
 – Share reference intervals (normal values)
 – Simplifies training and competency, float staff
Continuity of Care

ER -> OR
ICU

POCT
Critical Care
Core Lab

Home
Unit
Clinic

POL - Clinic
POCT Data Management

• Computerized POCT devices automate the QA documentation (and billing) process by storing patient and operator identification with patient result, time and date.

• Electronic POCT data can be transmitted to the medical record, hospital information systems or other databases.

• Computerized POCT devices mandate performance of QC and lockout if not performed successfully. Operator lockout ensures only trained and competent staff perform testing.

• Electronic data streamlines the quality review of large amounts of data.

• Possibility of automating data reduction and alert algorithms to highlight problems and trends.
POCT Data Transfer

- **Automatically transfer data from devices to a central database**
- Reduce data collection task
- Make data accessible to authorized personnel
- Support quality control efforts
ABOTT QCM 3.0

OPERATOR CERTIFICATION

Search Criteria

- Instrument: PCx
- Last Name: __________
- Operator ID: __________
- Expiration Date: __________

Display Records

2420 Records Found Displaying Page 1 of 25

E-Mail

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Operator ID</th>
<th>Original Cert. Date</th>
<th>Cert. Date</th>
<th>Recent Interval</th>
<th>Exp. Date</th>
<th>Auto Recert</th>
<th>Last Good QC</th>
<th>Last Pat Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>40238</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>05/12/2002</td>
<td>04/29/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00341</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02634</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03584</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03888</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04901</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>01/24/2002</td>
<td>03/08/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05518</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>02/13/2002</td>
<td>03/14/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08117</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09500</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40917</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41897</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08025</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41253</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ICU Workload

Location Choice: Baystate Medical Center - ICU/NEURO - ICU
Instrument: PCx
Sort By: Instrument Serial No.
Date Range: 08/01/2003 to 08/31/2003

<table>
<thead>
<tr>
<th>Facility: Baystate Medical Center</th>
<th>Department: ICU/NEURO</th>
<th>Location: ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCx</td>
<td>M10370048</td>
<td></td>
</tr>
<tr>
<td>PCx</td>
<td>M11260030</td>
<td></td>
</tr>
<tr>
<td>PCx</td>
<td>M12080023</td>
<td>M12080023</td>
</tr>
</tbody>
</table>

ICU Totals:
- Patient Tests: 102
- Control Tests: 175
- Proficiency Tests: 0
- Linearity Tests: 0
- Electronic Tests: 0
- Test Errors: 4
- Total: 277

ICU/NEURO Totals:
- Patient Tests: 102
- Control Tests: 175
- Proficiency Tests: 0
- Linearity Tests: 0
- Electronic Tests: 0
- Test Errors: 4
- Total: 277

Baystate Medical Center Totals:
- Patient Tests: 102
- Control Tests: 175
- Proficiency Tests: 0
- Linearity Tests: 0
- Electronic Tests: 0
- Test Errors: 4
- Total: 277
Tip: Use Electronic Databases, Distribute Responsibilities, Reduce Paperwork

Nursing Unit Employee Records

POCT Policies

POCT Database
Quality Control Records
Operator Competency Dates

POCT Coordinator
Device Validations
Lot checks and management
Training/Competency records
Nursing Unit Compliance Trends
Promote Self-Management

• While POCT is a partnership between lab and clinical services, inspectors hold the site performing the test and CLIA director responsible
• The lab can’t hold an operator’s hand 24- hrs a day, sites must take charge
Self-Management

• POCT website developed with all of the tools necessary to manage POCT
• POCT sites have necessary resources, and have no one to blame but themselves for not succeeding
• Separates the lab from being responsible and in the middle of a nursing care process. Lab is available, nursing is responsible
Welcome

Welcome to the Point-of-Care Testing (POCT) website. This site is designed to provide you the tools to manage your POCT program. Staff will find current policies and procedures, training forms, quality improvement scores for individual sites and guidance to manage their POCT program. Unit POCT contacts, nurse managers and directors are encouraged to visit this site frequently to keep up-to-date with the latest developments affecting their POCT.

Mission

The Point of Care Testing program at the Baystate Health System is focused on providing patient care services available at the point of care. The mission of this program is to improve patient care through quality assurance, patient safety, and patient satisfaction.

What’s New in POCT?

- The Department of Pathology POCT Staff - Contact Information
Policies and Procedures
Last Updated: December 10, 2010

These are the current Policies and Procedures for POCT with the latest revision date. Hard copies can be printed to update the medical unit POCT Procedure Manuals at least annually.

HemaPrompt (Fecal Occult Blood) [reviewed 8/10/2010]

Hemochron Signature Elite (ACT-LR/ACT+) [revised 10/19/2010]

i-Stat 1 Testing Procedure [revised 10/19/2010]
- **i-Stat 1 Glucose Fact Sheet [updated 1/29/2010]**
- **i-Stat 1 Cartridge or PCx Plus Strip: Which Glucose is Right for My Patient? [updated 1/2010]**

Macroscopic Urinalysis Dipstick Chemstrip 10MD [reviewed 8/10/2010]

Macroscopic Urinalysis (UriSys 1100) Chemstrip 10MD [reviewed 8/10/2010]

Macroscopic Urinalysis Visual Dipstick [reviewed 8/10/2010]

pH Paper/Nitrazine Paper [reviewed 8/10/2010]
- **pH Paper QC Log [updated 1/2/2003]**

Pregnancy (Quidel QuickVue) Urine hCG Test [reviewed 8/10/2010]

Proficiency Testing (POCT) [reviewed 8/10/2010]

Provider Performed Microscopy Training and Competency [reviewed 8/10/2010]

Fecu Test [reviewed 8/10/2010]
I. Purpose
The i-STAT 1 analyzer is intended for use with i-STAT cartridges for in vitro quantification of various analytes in whole blood and with the Abbott MediSense® Precision PCx™ Blood Glucose Test Strip for the in vitro quantification of glucose in whole blood. The system incorporates a comprehensive group of components to perform blood analysis at the point of care. A portable hand-held analyzer, a cartridge with required tests and up to 95 μL of blood will provide quantitative test results for blood gas and chemistry tests within 2 minutes. Glucose results are available from the Precision PCx Blood Glucose Test Strip in as little as 20 seconds on the hand-held analyzer.

II. Principle
a. i-STAT Test Cartridges
Sodium, potassium, chloride, ionized calcium, pH and pCO₂ are measured by direct ion-selective electrode potentiometry. In the calculation of results for sodium, potassium, chloride and urea, concentration is related to potential through the Nernst equation.
POCT Website Afterthoughts

• Protect your content
 – Use .pdf versions or copy protected word docs
 – Only allow access behind your institutional firewalls
 – Get IS involved in serving your content
 – Becomes important with separate physician offices/hospitals under separate CLIA just adopting your policies
Promote Self-Inspection

• Key to self-management is site self-inspection
• Sites utilize same checklist that POC coordinators use to grade compliance
• Compliance tied directly to regulations
• Sites that regularly self-inspect are showing the most QA improvement
Baystate Health System/Self Inspection Worksheet

Site __________________ Date of Review __________
Signature ________________________________

<table>
<thead>
<tr>
<th>GLUCOSE</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC Dated and In Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Lot #:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Lot #:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Clerical ____ / Errors ____</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEMOCULT</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slides Stored Properly and Not Exp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Result/Pos & Neg QC Charted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH / NITRAZINE PAPER</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper and Buffers dated & in date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Performed as Required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i-STAT</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-STAT Cartridges Dated / Not Exp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integration

• Just providing faster results doesn’t guarantee improved patient outcome
• Improved outcomes come from better use of faster results
• POCT is not an isolated process
• POCT results should be integrated into the overall patient-care pathway
• Need to consider
 – Why was the test ordered?
 – How is the result going to be utilized in care?
 – Is POCT the most appropriate method for patient need?
• Communication with clinician is key to delivering optimal POCT interpretation and next steps.
Clinical Outcomes of Point-of-Care Testing in the Interventional Radiology and Invasive Cardiology Setting

James H. Nichols,¹ Thomas S. Kickler,¹ Karen L. Dyer,¹ Sandra K. Humbertson,¹ Peg C. Cooper,² William L. Maughan,³ and Denise G. Oechsle²

Background: Point-of-care testing (POCT) can provide rapid test results, but its impact on patient care is not well documented. We investigated the ability of POCT to decrease inpatient and outpatient waiting times for cardiovascular procedures.

Methods: We prospectively studied, over a 7-month period, 216 patients requiring diagnostic laboratory testing for coagulation (prothrombin time/activated partial thromboplastin time) and/or renal function (urea nitrogen, creatinine, sodium, and potassium) before elective invasive cardiac and radiologic procedures. Overall patient waiting times improved only when systematic changes were made in workflow (phase 4, 109 ± 41 min; n = 12; P = 0.02). For patients needing coagulation testing, wait times improved only when systematic changes were made in workflow (phase 4, 109 ± 41 min; n = 12; P = 0.01).

Conclusions: Although POCT has the potential to provide beneficial patient outcomes, merely moving testing from a central laboratory to the medical unit does not guarantee improved outcomes. Systematic changes in patient management may be required.

© 2000 American Association for Clinical Chemistry
CVDL Outcomes Trial

- Prior to therapeutic intervention, patients require coagulation (PT/aPTT) and/or renal function testing (Na/K, BUN/Creat)
- Phase 1 – workflow and patient throughput determined using central lab testing.
- N = 135 patients over 95 days
- Despite arriving 120 minutes early if lab work needed, 44% of results not available prior to scheduled procedure time.
- Average patient wait time was 167 minutes
Fig. 2. CVIC patient workflow.
* steps affected by implementation of POCT and workflow improvement initiatives. IV, intravenous drip; Coag, coagulation; Chem, chemistry; LIS, laboratory information system.
JHH CVDL Outcomes Trial

• POCT improved wait times over core laboratory, but not significantly.

• Significant changes only occurred after unit workflow reorganized to optimize use of POCT results (implemented communication center between admit and procedure rooms); decreased wait times 63 mins for coag (N=9, p = 0.014) and 47 mins for renal (N=18, p = 0.02)

• Hospital chose not to implement POCT once patient workflow was streamlined for efficiency
POCT Improves Patient Outcome

- Oncology Center – 2 blocks from hospital
- Patients need estimate of renal function before administration of chemotherapy
- Hematology laboratory onsite performs cell counts and simple chemistries (i-stat)
- Creatinine sent to core lab – periodic courier pickup (every 2 hours), means patients could wait up to 4 hours before testing completed
- Need faster turnaround time for results

POCT Creatinine

- Evaluated POCT creatinine (i-Stat and IRMA)

<table>
<thead>
<tr>
<th>MDRD 60 mL/min</th>
<th>IRMA vs Jaffe</th>
<th>i-Stat vs Jaffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Predictive Value</td>
<td>100%</td>
<td>67%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>94%</td>
<td>90%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>IRMA vs Enz</th>
<th>i-Stat vs Enz</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Predictive Value</td>
<td>78%</td>
<td>60%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>96%</td>
<td>88%</td>
</tr>
</tbody>
</table>

- POCT gave higher creatinine levels, called more patients abnormal.
- Physicians had to adjust their cutoff levels for management decisions to higher creatinine (lower GFR) when utilizing POCT compared to lab.
- POCT led to faster results and moved patients through clinic, resulting in increased patient and physician satisfaction.
POCT Improves Patient Outcome

• POCT creatinine improved patient care in our Heme/Onc clinic.

• But, pharmacy and clinicians had to use different cutoffs and ranges for POCT results compared to lab creatinine

• Need for test, tied to technology, and management after test result (ie pharmacy utilized to estimate GFR and alter dose of medication)

• Test integrated into pathway of care

• Care is streamlined as testing can occur when needed and treatment can follow as soon as result is available
POCT Information Management

• POCT is a different technology
• Results are not equivalent to other laboratory methods without considering unique performance characteristics
• Baystate electronic medical record overlays results of the same name, so physicians can trend tests over time.
• POCT results cannot be freely interchangeable with other methodologies and electronic reporting must keep results separate.
• We’ve developed POCT flowsheets to automate reporting of POCT results.
 – POCT results in nursing notes separate from lab reported results
 – POCT results require selection of site location – linked to licensure
 – Prevents intermixing of lab and POCT results, and misinterpretation
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose Level</td>
<td>8:40</td>
<td>6:52</td>
<td>6:44</td>
<td>5:15</td>
<td>5:10</td>
</tr>
<tr>
<td>Glucose, Istat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose, POC</td>
<td>143 H</td>
<td>184 H</td>
<td>207 H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta Hydroxybutyrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUN</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine-Blood</td>
<td>1.5 H</td>
<td>1.4 H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated GFR, Non African American</td>
<td>41</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated GFR, African American</td>
<td>50*</td>
<td>54*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>6.3 L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium, Ionized pH Corrected</td>
<td>1.01*C</td>
<td>1.02*C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td></td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td>0.9 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POC Urinalysis

Color
- Colorless
- Straw/Light yellow (Normal)
- Yellow (Normal)
- Amber/Dark yellow (Normal)
- Green
- Pink
- Red
- Brown
- Orange

Appearance
- Clear (Normal)
- Hazy (Normal)
- Cloudy (Normal)

Glucose
- Negative (Normal)
- Trace (100 mg/dl)
- 1+ (250 mg/dl)
- 2+ (500 mg/dl)
- 3+ (> or = 1000 mg/dl)

Bilirubin
- Negative (Normal)
- 1+ small
- 2+ moderate
- 3+ large

Ketones
- Negative (Normal)
- Trace (5 mg/dl)
- 1+ (15 mg/dl)
- 2+ (40 mg/dl)
- 3+ (80 mg/dl)

Specific Gravity
- < or = 1.005
- 1.010
- 1.015
- 1.020
- 1.025
- 1.030

Blood
- Negative (Normal)
- Trace
- 1+ small
- 2+ moderate
- 3+ large

pH
- 5.0
- 5.5
- 6.0
- 6.5
- 7.0
- 7.5
- > or = 9.0

Protein
- Negative (Normal)
- Trace
- 1+ (30 mg/dl)
- 2+ (100 mg/dl)
- 3+ (300 mg/dl)

Leukocytes
- Negative (Normal)
- 1+ small
- 2+ moderate
- 3+ large

Nitrite
- Negative (Normal)
- Positive

Urobilinogen
- 0.2 mg/dl
- 1 mg/dl
- 2 mg/dl
- 4 mg/dl
- > or = 8.0

Organization/CLIA #
Networking with Colleagues

- Listserv is free of charge
- Open to anyone (including non members)
- Users can post a question and/or respond to other users
- Postings are sent to all users who join the group
- Provides opportunity to connect with colleagues and discuss issues
Listserv Program

Listservs are collaborative email lists that make it easy to exchange ideas and discuss issues online. Each message is automatically sent to every member of the list. AACC maintains these listservs to facilitate interaction among clinical laboratorians. Each listserv is different, but they all offer immediate and practical advice from colleagues.

Listservs are free and easy. The best way to see if one is right for you is to give it a try by clicking on the links below. For questions about the listserv program, please contact the Webmaster.

Please read these Rules of Etiquette before sending a message to the List.

To subscribe (or unsubscribe) click on the listserv link below:

- Animal Division
- Clinical Chemistry General Topics
- Clinical and Diagnostic Immunology Division
- Clinical Translational Science Division (New!)
- Critical and Point of Care Testing Division
- Industry Division
- International Members
- Laboratory Information Systems and Medical Informatics (LISMI) Division

Join Now!

Join and Receive Clinical Chemistry
The most cited journal in your profession—ranking in the top 4% of all published journals.
Evidence Based Practice for POCT

The National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines

Draft Guidelines

Evidence Based Practice for POCT

This document is in final review and we are no longer accepting comments.

PDF Format 1.3 MB

Literature Searches
PDF Format 341 kb

2004 Annual Meeting Presentations

Supporters

Organizing Committee:

James H. Nichols, Ph.D., FACB (Chair)
Baystate Health System, Springfield, MA

Robert H. Christenson, Ph.D., FACB
University of Maryland School of Medicine, Baltimore, MD

William Clarke, Ph.D.
Deciding Factor: Selection Criteria for Point-of-Care Testing Devices (588-614-10)

Speaker: Marcia L. Zucker, PhD. Director, Clinical Support, Response Biomedical Corporation, Vancouver, BC, Canada
Date/Time: September 16 • 1:00-2:00 PM Eastern (US) Time
Description: There is an increasing trend in health care delivery toward decentralized, point-of-care testing (POCT) for a growing number of analytes. Implementation of POCT includes an evaluation of various POCT options, assessment of the potential costs and benefits of the POCT under consideration, and identification of any required process changes to ensure that maximum benefit to both providers and patients is realized. This session will provide an overview on selection of POCT devices based on the patient care setting and clinical needs. This includes clinical and operational needs assessment, evaluation of candidate systems, and considerations involved in system implementation.

Learning Level: Intermediate
Objectives: At the conclusion of this program, the participant will be able to
• Identify resources for information on potential POCT systems.
• Evaluate clinical and operational requirements for POCT implementation.
• Identify the critical requirements for successful implementation of novel POCT.

Related CLSI document: Selection Criteria for Point-of-Care Testing Devices; Approved Guideline (POCT09-A)

Ensuring That Hematology Analyzers Tell the Truth (588-615-10)

Speaker: Albert Rabinovich, MD, PhD. NovoMetrics, Inc., Mountain View, CA, United States
Date/Time: September 23 • 1:00-2:00 PM Eastern (US) Time
Description: An automated hematology complete blood count (CBC) analyzer must provide physicians with reliable medical data for patient management. Truthful data depend on robust system design, which is initially validated by the manufacturer and then verified by the end-user laboratory. Because CBC analyses are performed on a heterogeneous suspension of blood cells, particular attention to various preexamination aspects is critical to success in generating accurate patient results. Although automated hematology analyzers share the same quality control (QC) principles as automated chemistry analyzers, they also have unique characteristics that require
Clinical and Laboratory Standards Institute

- The leader in clinical and laboratory standards to improve the quality of medical care.
- To promote best practices in clinical and laboratory testing throughout the world, using a consensus-driven process that balances the viewpoints of industry, government, and the healthcare professions.
- CLSI encourages the involvement and association of all parties with interest in its programs and products.
- Global with 30% of membership outside North America, and increasing
- Encourage international participation by responding to call for nomination on standards development committees
Emergency Cardiac Biomarkers and Point-of-Care Testing: Optimizing Acute Coronary Syndrome Care Using Small-World Networks in Rural Settings

Kost, Gerald J.; Kost, Laurie E.; Suwanyangyuen, Audhawan; Cheema, Simrin K.; Curtis, Corbin; Sumner, Stephanie; Yu, Jimmy; Louise, Richard F. Point of Care: The Journal of Near-Patient Testing & Technology. 9(2):53-64, June 2010.
doi: 10.1097/POC.0b013e3181d9d45c
Point of Care: Journal of Near-Patient Testing and Technology

• Content available online
• Discounted subscription for AACC CPOCT Division members
• Original research
• Editorials
• Literature reviews
• Regulatory Affairs
• Asked and answered
• Symposia abstracts and presentations
CAP POCT Toolkit

• For laboratory directors of POCT
• A resource for any pathologist wanting to learn about POCT or who has responsibility to guide or direct POCT
• Useful for residents or those recently assigned to POCT
• Living document, built on content by submission of cases, etc (like Wikipedia, only peer reviewed)
• Organized into overview and then follows US CLIA regulations for rules and responsibilities of lab director with in depth discussion on specific roles and functions of the lab director. (like test selection, validation, etc)
Summary

- POCT is an increasingly popular means of delivering laboratory testing closer to the site of patient care.
- A faster result isn’t necessarily a better result
- Quality concerns require laboratory involvement and supervision of testing process
- Integration of POCT into patient care pathways ensures a link of test to patient outcome.
- A POCT program is a resource to clinical staff for policy, practice, education, troubleshooting and application of POCT results