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Learning Objectives

« Define artificial intelligence (Al) and machine learning (ML)

 |dentify current uses of AI/ML in our dally lives

 |dentify Al/ML techniques to detect or prevent testing errors

« Describe AI/ML technigues for image and pattern recognition for diagnostic purposes
» Discuss potential applications for Al generated synthetic data

* Discuss potential uses of Al “chatbots” for POCT applications
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What is Artificial Intelligence / Machine
Learning?

artificial intelligence

noun

Artificial Intelligence

Definition of artificial intelligence

1 :abranch of computer science dealing with the
simulation of intelligent behavior in computers

2 :the capability of a machine to imitate intelligent human
behavior

HEALTH



What is Artificial Intelligence / Machine
Learning?

Artificial Intelligence

machine learning uoun

Definition of machine learning

: the process by which a computer is able to improve its own
performance (as in analyzing image files) by continuously
incorporating new data into an existing statistical model

/1 An entire subspecialty known as machine learning is
devoted to building algorithms that allow computers to
develop new behaviors based on experience.

UCDAVIS
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What is Artificial Intelligence / Machine
Learning?

Artificial Intelligence

A broader branch of machine Machine Learning

learning focused on learning
data representations through
layers of artificial neural
neural networks.

Deep
Learning

HEALTH



What is Artificial Intelligence / Machine
Learning?

Generative Artificial Intelligence

Generative Al is a type of Al capable of
generating text, images or other media in
response to user prompts. In short, it uses
Al to learn patterns from training data to
generate new data that has similar
characteristics.

UCDAVIS
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AI/ML is Already Here and its
Changing Our Lives!

HEALTH



Common AlI/ML Methods in Lab Medicine
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AI/ML Laboratory Opportunities

OPPORTUNITY EXAMPLES

Error Detection / Prevention Specimen integrity, mislabeled specimens,
facial recognition
Image / Pattern recognition Slide and fluid analysis

Multi-Analyte / Complex Data Analysis Mass spectrometry, “big data” applications
(e.g., EHR data, genomics, etc)

Automated medical decision-making Point-of-care testing

UCDAVIS
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Hemolysis Detection by Machine Learning

Centrifuged samples Photographed by camera HIL-indices measurement Idetifying image-interfered

samples by human examiner

=

_—
==
_—
=
—
=
L

Model trainin : ; S g :
sl wliels of Qualified Hemolysis  Icterus Lipemia Image-interfered
| | |
Unqualified
Yang C, et al. Clin Chim Acta 2022;531:254-260. 12
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Hemolysis Detection by Machine Learning

« Adataset of 16,427 sample images were collected. Samples
divided into training and test datasets.

« Deep learning algorithms achieved an area of the curve
0.99 with a sensitivity of 97% and specificity of 94.2%.

* When the algorithm was applied, serum indices tests were
reduced for 26.76% (n = 1225)

* Among the 26.76% of samples, 1 sample was misclassified
for predicted serum indices lower than the lower limit but
measured serum indices greater than the cutoff values, 3
samples were misclassified for predicted serum indices
greater than the upper limit but measured serum indices
lower than the cutoff values

HEALTH Yang C, et al. Clin Chim Acta 2022;531:254-260.
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FEATURED

Using Machine Learning-Based Multianalyte Delta Checks to
Detect Wrong Blood in Tube Errors

Matthew W Rosenbaum, MD, Jason M Baron, MD

American Journal of Clinical Pathology, Volume 150, Issue 6, 24 October 2018, Pages 555-566,
https://doi.org/10.1093/ajcp/aqy085
Published: 30 August 2018

Volume 150, Issue 6

December 2018
¢¢ Cite  M# Permissions ¢ Share v
< Previous
Abstract
Objectives

An unfortunate reality of laboratory medicine is that blood specimens collected from one
patient occasionally get mislabeled with identifiers from a different patient, resulting in so-
called “wrong blood in tube” (WBIT) errors and potential patient harm. Here, we sought to
develop a machine learning-based, multianalyte delta check algorithm to detect WBIT errors
and mitigate patient harm.

HEALTH Rosenbaum MW, et al. Am J Clin Pathol. 2018 Oct 24;150(6):555-566.
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Study Methods: Overall Design

Training Data

Testing Data

Patient admissions with admit date during calendar month A*<

Patient admissions with admit date during calendar month B®<

5,148 Patient admissions
231,359 Unique test results across the selected analytes®
24,610 Unique patient collections

5,204 Patient admissions
224,422 Unique test results across the selected analytes®
24,038 Unique patient collections

14,934 Unique patient collections
across 4,135 unique patient admissions

¢ Include only complete collections
(time points with all 11 analytes)

¢ Link collections to the most recent prior complete
collection on the same patient admission

¢ Exclude collections where most recent prior collection
was nonexistent (ie, first collection per admission or
prior complete collection more than 36 hours earlier)

14,024 Unique patient collections
across 4,185 unique patient admissions

Final Training Dataset
10,799 Unique patient collections

2,369 Unique patient admissions
[14,934 - 4,135 = 10,799, as excluding first collection per
admission]

Final Testing Dataset
9,839 Unique patient collections
2,486 Unique patient admissions
[14,024 - 4,185 = 9,839, as excluding first collection per
admission)




Original Data

Patient Collection | Ma K e | Prior Prior

admission | date/time Na K

1234567 - 1AM S50 140 -4 3.9 P ==

iM1880 | &AM T~

"l-‘_‘_ -

1234567 - | 1/aM990 141 | 38 .| 140 3.0

1/1/1990 &AM

2234567 - | 1/2/1900 142 | 36 o -

11080 | 6am N

2234567 - | 1/3/1990 143 | a7 -‘:‘.‘.""142 3.6

1/1/1990 B AM

3234567 - | 1/2/1900 131 5.1 | = -

1/1/1890 & AM =

—]

F2I4567 - /31950 133 5.0 - a 5.1

1/1/1990 & AM
After WBIT Error Simulation

Patient Collaction Na K Prior Prior Casa/
admission | dateftime Ha K control
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Study Methods

I Final datasets (testing and training datasets kept separate)

Randomly sample 25%
of patient collections

Error
partition

+ For each patient collection, select a
random patient collection (from the final
training or testing dataset, prior to
partitioning); treat the randomly selected
patient collection as the associated
prior patient collection

+ Label patient collections to denote
that it is a simulated error

+* Randomly select
cases for WBIT error
simulation according
to specified error
prevalence

|

Control
partition

Final control partition
[simulates WBIT errors)

Final control
appropriate clinical practice)

partition (simulates

Rejoin datasets, retain
labels denoting cases vs

controls

Final dataset with simulated WEBIT errors
[process kept separate for training and test sets up to this point)

Training dataset

Data with simulated
WEBITs and labels

Testing daum]

+ Leave each patient collection linked to
actual prior patient collection
for the same patient

+ Label patient collections te denote control

Data with
simulated WBITs

(WBIT labels
masked)

Patient 2234567 had a speciman Train
mislabeled with a label from models
patient 2234567

Trained models

WEIT predictions for test data

WEIT
labels
Compare predictions to
ground truth labels
Performance characteristics

(en, AUC)




Methods of Analysis including AI/ML Techniques

What is Support Vector Machine (SVM)

Model Name
Univariate models
Univariate absolute

difference (named for

each analyte)

Univariate velocity

Multivariate models

Logistic regression,
difference only

Logistic regression,
velocity only

Logistic regression,
difference and values

Type

Univariate: evaluate
sensitivity/specific at
various thresholds

Univariate: evaluate
sensitivity/specific at
various thresholds

Logistic regression

Logistic regression

Logistic regression

Predictors

Absolute change in consecutive
results for each analyte

Absolute velocity of change between
consecutive results for each analyte

Absolute change in consecutive
results for each analyte

Absolute velocity of change between
consecutive results for each analyte

(1) Absolute change in consecutive
results for each analyte; (2) actual
test results

SVM, difference only SWVM Absolute change in consecutive

results for each analyte » X L
SVM, difference and SVM (1) Absolute change in consecutive Constructs a hyperplane (—) that that best separates groups.
values results for each analyte; (2) actual The best hyperplane maximizing the margins (---) is selected.

test results .+ Hyperplanes may exist in 3D space to improve separation of data
points and further maximize margins.

SVM, support vector machines.




Results — Predictive Power of Al/ML (SVM) for WBIT Events
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AI/ML Laboratory Opportunities

OPPORTUNITY EXAMPLES

Error Detection / Prevention Specimen integrity, mislabeled specimens,
facial recognition
Image / Pattern recognition Slide and fluid analysis

Multi-Analyte / Complex Data Analysis Mass spectrometry, “big data” applications
(e.g., EHR data, genomics, etc)

Automated medical decision-making Point-of-care testing

UCDAVIS
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Hematology Image Recognition

UCDAVIS
HEALTH
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Automated Urinalysis Image Recognition
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Crystals
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AI/ML Laboratory Opportunities
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Artificial Intelligence for Genomic Testing
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HEALTH Rusch M, et al. Nat Communications 2018;9:3962.
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Al/ML Enhanced Mass Spec COVID-19 Testing Solution

Step 1 Step 2

Step 3 Step 4 Step 5
# Clinical specimean acguisition * MALDI-TOF Generated MS * MS paaks standarization * MILO (Machine Intelligence ® Mew MALDI Mass Spec test
® pethod translation ta clinical peaks softwars Laarning Optimizer) Auto-hL analyzad through ML-based
testing genarating thousands of ML
* PCH reference method

pradiction on new cases

® Communicating with
Spectra-Pass App

As a way to bypass COVID-19 molecular and antigen testing supply shortages, UCDH and partners with

SpectraPass developed a novel mass spectrometry-based COVID-19 test that also leveraged machine
learning.

models

# Bast MILO ML model selected
°

Machine learning as based on the in-house developed Machine Intelligence Learning Optimizer (MILO)
platform.

HEALTH Tran NK, et al. Sci Rep 2021;11:8219
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MALDI-TOF-MS Based COVID-19 Testing Solution

_osLaserbeam
+
:
my $8¢ |
© + Desolvation &
4 . - . . ’
g o Desorptlon’ .i.o ionization _ .o i to Mass
=3 94 ©g0 #® analyzer
+ o ®
+
*
$ /
3 L I
+

Proton Transfer

@ Analyte spots
® Matrix spots

MALDI-TOF-MS provides means to detect host-response profiles (proteins)
from clinical samples. Low cost, fast, high-throughput, and can be random
access.

HEALTH Tran NK, et al. Sci Rep 2021;11:8219 25



Machine Learning Enhanced MALDI-TOF-MS-Based
Detection of COVID-19

A Averaged Spectra Comparison
Positive, Negative

1800 e i ‘

1500

1200

900

600

300

.
-
’
-
-"‘ lf
K
e _aa A g®

3000 6000 9000 12000 m/z

Mass spectrometry is a unique way to analyze samples of various kinds. For
COVID-19, anterior nares proteins detected by MALDI-TOF-MS produces
hundreds of peaks. How do you analyze this data??

UCDAVIS _ .
HEALTH Tran NK, et al. Sci Rep 2021;11:8219
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Our MALDI study also identified 14,270 endogenous peptides across 1,198 protein groups. This "Reactome” figure
highlights protein association with certain pathways. Yellow highlights indicate high association. Darker shades of gray
indicate poor (non-statistically significant) pathway association (Tsai H, et al. ACS Omega 2022;20:17462)



MILO AUTO-ML PLATFORM

Machine Intelligence Learning Optimizer

Primary Validation Testing Data:
DATASET 1

Generalization Testing Data:
DATASET 2

FEATURE
EXPERT-DRIVEN DATA SELECTION /
DATASETS PROCESSING
& SPLITTING FEATURE
ENGINEERING

SELECTED
MODEL IS
DEPLOYED

TRAINING / ML MODEL
TESTING TRAINING

ML MODEL BEST MODELS
VALIDATION IDENTIFIED

* DATASET 1: Balanced
Dataset collected and up-
loaded by user (to be used UNSUPERVISED MACHINE LEARNING: SUPERVISED MACHINE LEARNING:
by MILO for training and
validation testing)

To select the best feature set comb Search tools with custom parameters find the
mations and/or transformed features best hyperparameter combinations for each
* DATASET 2: Unbalanced set of scaler/feature set dataset combinations
{prevalence-based) Dataset within the following algorithms: Deep neural
collected and uploaded by network, logistic regression, naive Bayes,
user (to be used by MILO for k-nearest neighbor, support vector machine,
the final Generalization random forest and gradient boosting machine

testing step

* MILO remowv issing 5 ® Dataset's number and percentages #® Data is scaled per pipeline using ®* The PMML or joblib file can

in Datasets au ically within h category is automa of vari g meths the use mode

e model NOW
data and make pre

Iy a d




MORE MODELS - LESS TIME -— MORE
OPPORTUNITIES

ROC-AUC 94
e

49,940 models
~400 hours (~4 months)

Current ML Approach

Tran NK, et al. Sci Rep 2020;10:12354



MORE MODELS - LESS TIME -— MORE
OPPORTUNITIES

ROC-AUC94 ) ? Are there any other potential models?
| === - -

49,940 models
~400 hours (~4 months)

Current ML Approach

Tran NK, et al. Sci Rep 2020;10:12354



MORE MODELS - LESS TIME -— MORE
OPPORTUNITIES

L
&)
@
o
o
= ./ ROC-AUC 94 ’) P Are there any other potential models?
_ f = -
=
c
o
S ~400 hours (~
O D TEy S o e
ﬂ MILO found the model identified via
C_ID manual programming
=

<24 hours

Tran NK, et al. Sci Rep 2020;10:12354



MORE MODELS - LESS TIME -— MORE
OPPORTUNITIES

L

&)

@

o

o

f,:" Are there any other potential models?
-l

=

c

o

S

O

@) MILO found six additional better
§ models not found by the Current

Traditional ML approach

Limitations of manual programming
 Time

« Number of combinations

» Bias towards "preferred methods”

. * Bias towards feature combinations
Tran NK, et al. Sci Rep 2020;10:12354

<24 hours



Machine Learning Enhanced MALDI-

 Pilot study was based on both archived and
prospectively collected anterior nares swab
specimens

» Conducted from Aug to Dec 2020

* NGS performed to identify presence of non-
COVID-19 pathogens, as well as type
COVID-19 variants.

» Goal of the study was to confirm we can
readily differentiate between COVID-19 from
normal patients, including symptomatic vs.
asymptomatic cases.

HEALTH Tran NK, et al. Sci Rep 2021;11:8219

OF-MS-Based
Detection of COVID-19: Pilot Performance

Total Dataset (n = 226)
Symptomatic and Asymptomatic Patients

Y

ﬁ

Invalid MALDI-TOF-MS Results (n = 27)
due to polymer contamination

Final Dataset for Machine Learning
Analysis (n = 199)

DATASET A: Randomly selected
Balanced training and initial
validation test set to build and to
do the initial validation testing.
(n=82)

e

CoOVID-19 No COVID-19
(n=40) (n=42)

L

MILO generated ML Models
initially validated from a subset
of Dataset A

DATASET B: Generalization test set
representing the remaining cases
used as the secondary test set.

(n=117)
cCovID-19 No COVID-19
(n=67) (n=50)

I

ML Models derived from Dataset A tested
secondarily with Dataset B (generalization
test set) to assess true performance

33



Machine Learning Enhanced MALDI-TOF-MS-Based
Detection of COVID-19: Pilot Performance

1.0

0.9 }r
Best Model (Neural Network)
AUC: 0.9985

Accuracy: 98.3

Sensitivity: 100%

Specificity: 96.0%

Algorithm: Neural Network
Scaler: Min Max Scaler

True Positive Rate (Sensitivity)

0.25 - lector: Select Percentile (75%)
m Search
AUC = 0.9985
0.1 o
o A . Ll s .
0 0.1 0.25 0.5 0.75 0.9.

False Positive Rate (1 — Specificity)

HEALTH Tran NK, et al. Sci Rep 2021;11:8219

1.0

True Positive Rate (Sensitivity)

1.0

0.9

0.75 o

0.50 -

0.25 -

0.1 -

Best Model (Gradient Boosted Machine)
AUC: 0.9904

Accuracy: 96.6%

Sensitivity: 98.5%

Specificity: 94.0%

Algorithm: Gradient Boosting Machine
Scaler: Stagndard Scaler
Selector;/Random Forest Importance (25%)
Scorer: Accuracy

earchlr: 27 Random Search
AUC = 0.9904

0.1 0.25 0.5 075 09. 1.0
False Positive Rate (1 — Specificity)

34



Proving to Ourselves this is Real — Further Generalization and

Validation!

« A second study was started in early
2021 using the original 199
subjects, plus a more
heterogeneous group to total 361
patients.

» Added a second site (Las Vegas)
* Included vaccinated individuals

» Detected some non-COVID-19
pathogens by NGS (n = 3) and
several SARS-CoV-2 variants
(alpha, gamma, delta, iota, and
others)

HEALTH

Initial dataset of
COVID & Non-COVID

MALDI cases split into Datasets A & B
(n=361: 125 COVID+ & 236 COVID-)

Dataset C: Randomly selected
Balanced Training & Initial validation
test set to build and to do the initial

validation testing
(with an 80%-20% split & k-fold of 10)

Dataset D: Generalization test set
representing the remaining cases

(n=167) === used as the secondary test set
/ \ I (assessing their true performance)
(n=75) (n=92) I
Includes vaccinated & I
ED cases 1
|
|
|
Platform A generated ML Models |
Initially validated from subset of I CoVvID No COVID
Dataset C are then secondarily e == = = - (n=50) (n=144)
tested on the Dataset D to assess Includes
their true performance Vaccinated & ED
cases
35

Rashidi H, et al. PLOS One 2022;17(7): e0263954.



Proving to Ourselves this is Real — Further Generalization and
Validation!

* MILO outperformed the
competing autoML platform.

 Logistic regression produced
the optimal platform:

HEALTH

AUC: 0.989
Accuracy: 92.8%
Sensitivity: 100%

Specificity: 90.3%

A. MILO AutoML generated Models
Method Accurac AUROC Positive Percent | Negative Percent | F1 Score | % features
{95% CI) 95% CI Agreement (PPA) | Agreement (NPA) | Selected
.
. Wl. TR ERE . Gl I = e S5 0 [ B3, =t ) ~
Naive Bayes 91.7 (86.9-95.2) 99.2 (84.8-100) 100 (92.9-100) EE.9(82.6-93.5) 90.2 All®
Random Forest 095.4 (91.4-97.9) 08.1 (83.3-100) 92.0 (B0.8-97.7) 06.5 (92.1-98.9) 93.9 All*
Support Vector Machine 93.3(88.8-96.4) | 98.6 (86.8-100) 100 (92.9-100) 91.0 (85.1-95.1) 91.9 | 75%"
Neural Network-Multi Layer 94.9 (90.7-97.5) 99.6 (84.9-100) 100 (92.9-100) 93.1 (87.6-96.6) 92.5 All®
Perceptron
Gradient Boosting Machine 938 (89.4-96.8) 98.3 (B2.0-100) 94.0 (83.5-98.7) 938 (88.5-97.1) 92.2 All*
L(XGBoost)
B. Microsoft AutoML generated Models
Methed Accuracy % AUROC ™ Positive Percent | Negative Percent F1 Score | % features
(95% CI) Agreement (PPA) | Agreement (NPA) | Selected
% (95% CI) % (95% CI)
Fast Tree 87.1 (81.6-91.5) 98.0 08.0 (89.4-99.9) 83.3 (76.2-89.0) 79.7 All
Fast Forest B6.6 (80.9-91.1) 96.9 92.0 (80.8-97.8) 84.7 (77.8-90.2) T8.0 All
Gradient Boosting Machine (light) 86.1 (80.4-90.6) 98.3 98.0 (89.4-99.9) 81.9 (74.7-37.9) T84 All
Support Vector Machine 954 (91.4-97.9) 995 98.0 (89.4-99.9) 94 4 (89.4-97.6) 91.6 All
SDCA-Logistic Regression 918 (86.9-95.2) 994 100 (92.9-100) B89 (82.6-93.5) 86.2 All
LBFGS-Logistic Regression 90.7 (85.7-94.4) 99.3 100 (92.9-1040) B7.5 (80.9-92.4) 4.8 All
SGD-Calibrated 91.2 (86.3-94.8) 99.1 08.0 (89.4-99.9) 58.9 (82.6-93.5) 852 All
Symbolic SGD-Logistic Regression | 85.6 (79.8-90.2) 97.1 92.0 (80.8-97.8) 83.3 (76.2-89.0) 76.7 All
Averaged Perceptron 89.2 (83.9-93.2) 98.7 98.0 (89.4-99.9) B6.1 (79.4-91.3) 24 All

Rashidi H, et al. PLOS One 2022;17(7): e0263954.
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Conceptual Workflow of a Machine Learning Enhanced
MALDI-TOF-MS-Based Method for Detecting COVID-19:

COVID-19 Status Unknown ===

Routine ML
Updates

)

ML algorithms are continually validated
with new data for both quality monitoring
and model refinement.

Routine Data

CLIA certified/accredited space

School, Business, Travel Gateway

MALDI-TOF-MS Analysis
(Biosafety Level - 2)

Feed
Access Permitted for o
24 hours
CovID-19 COVID-19
Negative Positive or

Indeterminate

HEALTH

Access Denied and/or

=~ = = =% Confirmatory Testing

by Molecular

Jnoy T >
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Can we use this ML-enhanced
mass spectrometry for other
sample types?

UCDAVIS
HEALTH
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Breath Samples as a New
Specimen Paradigm

» Volatile organic chemicals (VOC) exhaled by
patients could be collected and analyzed to predict
various diseases.

 When aided by machine learning, VOCs detected by
mass spectrometry could be very specific and
differentiate between infectious diseases.

LV2, 12.2%
&0
s
)
©

@ COVID(+)
OCOVID(-)

-10 -5 0 5 10
LV1, 15.0%

UCDAVIS
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Breath Samples as a New
Specimen Paradigm

» Volatile organic chemicals (VOC) exhaled by
patients could be collected and analyzed to predict
various diseases.

 When aided by machine learning, VOCs detected by
mass spectrometry could be very specific and
differentiate between infectious diseases.

* Our team at UC Davis Health was able to show VOC
(63 compounds in total) detection aided by machine
learning could even differentiate between SARS-
CoV-2 variants (accuracy 82-84%, specificity of
79%).

communications
medicine

ARTICLE

MW Chasch dor epsanes

Predominant SARS-CoV-2 variant impacts
accuracy when screening for infection using

exhaled breath vapor

Mitchell M, McCartney® 27, Eva Borras® 7, Dante E. Rojas™?, Tristan L. Hicks® ',
Katherine L. Hamera'Z, Mam K. Tran®, Tina Tham®, Maya M. Juarez®, Enrique Lopez®, Michelas ). Kenyon®35 &

Cristina E. Davis@ 2%

Abstract

Background Mew technologies with novel and ambitious approaches are being developed Lo
diagnose or screen for SARS-CoV-2, including breath tests. The US FDA approved the first
breath test for COVID-19 under emergency use authorization in April 2022, Most breath-
based assays measure volatile metabolites exhaled by persons to identify a host response to
infection. We hypothesized that the breathprint of COVID-19 fluctuated after Omécron
became the primary variant of transmission over the Delta variant

Meathods We collected breath samples from 142 persons with and without a confirmed
COVID-19 infection during the Delta and Omicron waves, Breath samples were analyzed by
gas chromatography-rmass spectrometry.

Results Here we show that based on 63 exhaled compaunds, a general COVID-19 model had
an accuracy of 0.73 2 0.06, which imgroved to 082 £ 012 when modeling only the Delta
wave, and 0.84 £ Q.06 for the Omicron wave, The specificity improved for the Delta and
Ornicron models (079 £ 01 and 0.74 £ 12, respectively) relative to the general model
{0,612 0.13),

Conclusions We repart that the volatile signature of COVID-19 in breath differs between the
Delta-predominant and Owmicron-predominant variant waves, and accuracies improve when
samples from these waves are modeled separately rather than as one universal approach.
Qur findings have important implications for groups developing breath-based assays for
COVID-19 and other respiratory pathogens, as the host response to infection may sig-
nificantly differ depending on variants or subtypes.

Plain language summary

In recenl decades, scienlists have
found we exhale thousands of com-
pourds that reveal much about our
hiaalth, inchideng whistler we ame ek
with COVID-19. Our team asked whe-
ther the bresth profile of sommons
infeciod with the Delta wariant of
COVID-T8 would match the breath
profile caused by the Gmicron vamant
—a version af the virus that i maone
transmissible. We aralyzed breath
sampkes from 142 people, some sick
with either the Dela or Dmicron war-
it of COVID-13, and others wha
were negative for COVID-19. Owr
results indicate that the DeMa vadiant
altersd the conbents of our breath in &
different wary than the Omicnon vanant,
and breath-based tests improved when
optimized fo defed only one of the
variants, These findings meght impact
the design of futre breath-based tests
lor COVID-1R

UCDAVIS
HEALTH

McCartney MM et al. Comm Med 2022;2:158.
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Sepsis: The Clinical Problem

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection

Over 750,000 patients in the United States experience sepsis each yeatr.
Mortality ranges from 28-50% and can be as high as 90% in cases of septic shock.

Sepsis
750,000 375,000

Breast cancer, prostate cancer, and AIDS

466,000 84,000

. Diagnoses 7// Deaths

https://business.kaiserpermanente.org/
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Multicenter Burn Sepsis Data

ucomc

Sacramento, CA |

P

-
-

ClinicalTrials.gov Identifier: NCT01140269

Tran NK, et al. Sci Rep 2020;10:12354

U. Cincinnati
Cincinnati, OH

U. Miami
Miami, FL

Overview:

« Burn sepsis is hard to detect and current
criteria  exhibit poor sensitivity and
specificity.

« Dataset derived from an American Burn
Association / Department of Defense
funded sepsis study (n = 218 patients).

UCDAVIS
HEALTH



Multicenter Burn Sepsis Data

Chemistry BMP, CMP

Coagulation INR, aPTT

Hematology CBC w/ auto diff

Microbiology Bacterial and fungal
culture, plus MALDI-TOF-
MS

Acid-Base Blood gases

Molecular PCR pathogen
identification

*Plus vital signs paired to laboratory results

Overview:

« Burn sepsis is hard to detect and current
criteria  exhibit poor sensitivity and
specificity.

« Dataset derived from an American Burn
Association / Department of Defense
funded sepsis study (n = 218 patients).

« Dally vitals and routine lab results were
collected. Plus PCR infectious disease
data.

UCDAVIS . L
HEALTH Tran NK, et al. Sci Rep 2020;10:12354
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Burn Sepsis Prediction with Traditional Statistics
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American Burn Association (ABA)
Sepsis Criteria:

Temp: >39 C or <36.5C
Heart Rate: >110 beats/min
Respiratory: >25 breaths/min
WBC: Not used

Platelet Count: <100,000 cells/uL

uUCpAavis Tran NK, et al. Sci Rep 2020;10:12354
HEALTH Greenhalgh DG, et al. J Burn Care Res 2007;28:776-790
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Burn Sepsis Prediction with Traditional Statistics
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uUCpAavis Tran NK, et al. Sci Rep 2020;10:12354

HEALTH Greenhalgh DG, et al. J Burn Care Res 2007;28:776-790 ®



Burn Sepsis Prediction with Traditional Statistics
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TraHEAKTHet al. Sci Rep 2020;10:12354
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MILO AUTO-ML PLATFORM

Machine Intelligence Learning Optimizer

Primary Validation Testing Data:
DATASET 1

Generalization Testing Data:
DATASET 2

FEATURE
EXPERT-DRIVEN DATA SELECTION /
DATASETS PROCESSING
& SPLITTING FEATURE
ENGINEERING

SELECTED
MODEL IS
DEPLOYED

TRAINING / ML MODEL
TESTING TRAINING

ML MODEL BEST MODELS
VALIDATION IDENTIFIED

* DATASET 1: Balanced
Dataset collected and up-
loaded by user (to be used UNSUPERVISED MACHINE LEARNING: SUPERVISED MACHINE LEARNING:
by MILO for training and
validation testing)

To select the best feature set comb Search tools with custom parameters find the
mations and/or transformed features best hyperparameter combinations for each
* DATASET 2: Unbalanced set of scaler/feature set dataset combinations
{prevalence-based) Dataset within the following algorithms: Deep neural
collected and uploaded by network, logistic regression, naive Bayes,
user (to be used by MILO for k-nearest neighbor, support vector machine,
the final Generalization random forest and gradient boosting machine

testing step

* MILO remowv issing 5 ® Dataset's number and percentages #® Data is scaled per pipeline using ®* The PMML or joblib file can

in Datasets au ically within h category is automa of vari g meths the use mode

e model NOW
data and make pre

Iy a d




Sepsis Prediction with MILO Algorithm(s)

Plot the receiver operator characteristics for the currently B. Piot the reliability diagram (calibratiqn curve) for predictions
selected pipeline (prevalence dependent test) against the generalization dataset
Generalization ROC Generalization Reliability

Scaver . Startars Sceer

True Poanve Nate (Sernivey)
3 e
Protatdsy

Satecror Rardom Forest mportance B9%)
Sccew Accurscy
Searcher 2nd Random Seech
AUC - 09243

Fame Postree Rats (1 - Soecticry)

C.

T
Estimator SneSp | ROCAUC Accuracy F1  Sonsitivity  Specificly  Brier Score  Scalor Foature Seloctor Scorer  Searcher

K-Noarest Neighbor 0918 0956 087 0871 0958 0878 0.138 ‘Standard Scaler  Random Forust importance 25%)  Accuracy  2nd Random Search () €
K-Nearest Neighbor 0915 0954 0.892 0.866 0.958 0872 0.139 Standard Scaler  Random Forest importance 25%)  F1 2nd Random Search Qo
Logistic Regrossion 0906  0.945 0.868 0841 0979 0.833 0.146 Standard Scaler  Principal Component Analysis (90%)  AUC Random Search oo

UCDAVIS _
THEANN, et al. Sci Rep 2020;10:12354



Sepsis Prediction with MILO Algorithm(s)

Al

Plot the receiver operator characteristics for the currently 8. Plot the reliability diagram (calibration curve) for predictions
selected pipeline (prevalence dependent test) against the generalization dataset
Generalization ROC Generalization Reliability
§ }
! § Best Model (K-Nearest Neighbor)
_ ‘ .
: i JAUC: 0.9563
3 o e : 0
: e s Fon g S5 Accuracy: 89.7%
mm - - -
* Py o Sensitivity: 95.8%
RS IR Specificity: 87.8%
A
o
Estimator SneSp | ROCAUC  Accuracy FI Brier Score  Scalor Foature Selector Scorer Searcher
K-Nearest Neighbor 0918 0956 oss7 P osr| osss osrs  Jorss Standard Scaler  Random Fomst importance 25%)  Accuracy  2nd Random Search () €
K-Nearest Neightor 0915 0954 0.892 0866 0.958 0.872 0.139 Standard Scaler  Random Forest Impontance 25%) 1 2na Random searcn () €
Logistic Regrassion 0906  0.945 0868 0841 0979 0.833 0.146 Standard Scaler  Principal Component Analysis (90%)  AUC Random Search oo

UCDAVIS _
THEANN, et al. Sci Rep 2020;10:12354



Example Comparing Al/ML Performance versus Traditional
Sepsis Criteria for Burn Sepsis

MILO AlI/ML ABA Criteria SEPSIS-3

Features Hgb, BUN, TCO2, temperature, Temperature, heart rate, SOFA score parameters
(Predictors) heart rate platelet count, respiratory rate

Area Under the 0.96 0.76 0.55

ROC

Sensitivity (%) 95.8 75.0 61.2
Specificity (%) 87.8 65.7 55.1

Abbreviations: ABA, American Burn Association; SOFA, sequential organ failure assessment score.

SOFA Score: Glascow Coma Score, blood pressure, PaO2/FiO2 ratio, creatinine, platelets, total bilirubin,
respiratory rate.

‘ﬁéﬁ‘f}’ﬁ.s Tran NK, et al. Sci Rep 2020;10:12354
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AI/ML Laboratory Opportunities

OPPORTUNITY EXAMPLES

Error Detection / Prevention Specimen integrity, mislabeled specimens,
facial recognition
Image / Pattern recognition Slide and fluid analysis

Multi-Analyte / Complex Data Analysis Mass spectrometry, “big data” applications
(e.g., EHR data, genomics, etc)

Automated medical decision-making Point-of-care testing

UCDAVIS
HEALTH
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How about AI/ML for Point-of-Care Testing?

Point-of-Care Testing (POCT) is defined as medical testing HANDHELD

at or near the site of patient care

Includes:
» Disposable

Handheld

« Portable
« Transportable

« Benchtop

* Monitoring

BENCHTOP (NEAR-PATIENT)

e Smart devices

HEALTH >2



Could AI/ML be used to augment POCT result interpretation?

/ Limited by user expertise

// Accelerated Therapeutic Turnaround Time
/ "

s 3 e o o o

5 & . TRTh

KRR R

POINT-OF-CARE DIAGNOSTIC WORKFLOW

HEALTH >3



Burn-Related Acute Kidney Injury

PRE-RENAL

Heart Failure
Hypotension

Sepsis

KDIGO AKI Criteria

GFR cntena Urine output criteria
\\ 1
K Increased creatinine x 1.5 or UO <05mikg ' h'
INTRINSIC SPisk | GFR decrease >25% %6 h

Acute Interstitial Nephritis
Hypoxic/Ilschemic Injury P

Nephrotixic Injury

Increased creatining x2 or UO <05mikg ' h’
Injury \ GFR decrease >50% x12h

Increasad creatinine x3 or PER
GFR decrease =75% or U2°‘<h°-3 mikg h
i creatinine =4 m x or
B 100 ml {(acute resg gl“ anuria x12 h

= 0.5 mg per 100 mi o)

Persistent ARF = complete loss of

Loss renal function > 4 weeks

End-stage renal disease

« Sepsis

e “Burn Shock”

7/
g, High specificity

Up to 58% burn patients
experience AKI. Causes:

* Nephrotoxic medications

UCDAVIS  gen 5 et al. J Surg Res 2015;196:382-387.

HEALTH
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Biomarkers for Detecting Acute Kidney Injury

: KDIGO AKI Criteria
B I O m a'r ker PrOS CO n S GFR cntena Urine output criteria
.. . . . \ 1
Creatinine Easy to obtain  Half-life is 4 hours, .\ incressed creatinine 1.5 or UO <0.5 mikg™ h~! /
. ~ | GFR decrease >25% %6 h High sensitivi
Common test  requires — changes my \ / ?
Familiarity not be discernable for Increased creatinine 2 or UO <0.5 mikg™ h' /
up tO 12 hours Injury GFR decrease >50% x12h /
Increased creatinine x3 or B
| °""‘;::,°'°°9:,:’5*°' Syl -8/ —
Up to 70% of nephrons Fonen ‘T.?."m.(:m,.sz;."‘ anuiaxizh B Highspecifiy
= 0.5 mg per 100 mi di)

can be damaged to see
any real change.

Urine Output Easy to obtain  AKI may already be
Commontest  occurring before urine

Persistent ARF = complete loss of
Loss renal function > 4 weeks
ESRD End-stage renal disease

Familiarity output decreases
GFR Easily GFR may not change Up to 58% burn patients
estimated by  too much early on due experience AKI. Causes:
creatinine to complex _
values autoregulation. * Sepsis o
A | * Nephrotoxic medications

e “Burn Shock”

UCDAVIS 1OR-209.
HEALTH Sen S, et al. J Surg Res 2015;196:382-387.



Biomarkers for Detecting Acute Kidney Injury

Neutrophil Gelatinase Associated Lipocalin KIDNEY NEPHRON

NGAL n-ar

- ~
o

INTRINSIC @ '

Acute Interstitial Nephritis NGAL A |
Hypoxic/lschemic Injury \
PRE-RENAL Nechrofbde o
Heart Failure < it | 2 ¢
Hypotension \.

!

NGAL
NGAL
(Urine)

©

Urine NGAL very specific, but plasma

NGAL not. Not all patients make urine on
demand...

UCDAVIS 1OR-209.
HEALTH Sen S, et al. J Surg Res 2015;196:382-387.



Biomarkers for Detecting Acute Kidney Injury

Natriuretic Peptides for Cardio-Renal Syndrome

Na + Hy0 —— Volume

» Acute kidney injury can result .ﬂ..mim N
in acute heart dysfunction. f»«ﬂ;;f e

« Heart dysfunction results in

the release of natriuretic E—
peptides such as BNP and NT- Acute kidney injury V..

Glomerular discases

p ro B N P Interstitial discases 9

Acute tubular necrosis

Acute heart
dysfunctlon

B, Acute decompensation
N, Acute heart failure
" Ischemic insult
Arrythmias
Decreased CO

vnlpa!h(X(
activation

Acute pyelonephritis

Acute urinary obstruction
= RM activ hun

Biomarkers
Troponin

« The use of both plasma
& Myoglobin

NGAL and BNP/NT-proBNP \ / ) Vs
. . - A -
improves prediction of AKI. Bl Ses b / A -
H & coagulation imbalances
"_ Humoral '.'

# 8""”"3 Cytokine

secretion

*  Without BNP, plasma NGAL

( up.lw
specificity was about 90.9% ) @ o
with an area under the ROC i o
curve of 0.82. e Y

activation

LUUCDAVIS SenS, etal.JSurg Res 2015;196:382-387.
HEALTH Khawaja, et al. Biomarker Research 2019;7:4



Clinical Performance of AKI Biomarkers

1.00 1.00
A [J B
0.90 0.90
o BNP oo ~NGAL
0.70 670 |
e _ 080 e 060
H £
; 0.50 g 0.50
- 0.40 - 0.40 ]
0.30 0.30
0.20 020
0.10 0.10
0.00 | 0.00
0,00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0,80 0,90 1.00 0.00 0.10 0.20 0.30 0.40 0.50 0,60 0.70 0.80 0.80 1.00
- 1-Speciicity
Faise Positive Fatse Positive
1.00 1.00
C o D 0.90
0.80 0.80
0.70 0.70
» 0®0 s 0.60 .
fi o UOP ﬁg 050 Creatinine
g 0.40 2 0.40
0.30 0.30
0.20 0.20
0.10 0.10 i
0.00 0.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0,90 1.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
1-Specificity 1 -Speccity
False Positive Fadse Positive

Receiver Operator Characteristic (ROC)
Curves for AKI Biomarkers

UCDAVIS .
HEALTH Tran NK, et al. Burns 2019:45:1350.
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Clinical Performance of AKI Biomarkers

1.00 1.00 . . .
N I 8 e Receiver Operator Characteristic (ROC)
020 TBNP o0 GAL Curves for AKI Biomarkers
070 .70 |
® 080 e 060 '
2§ 050 §§ o « UOP and creatinine do not perform well at all,
2% 0w 23 00 despite being the most common
0.30 030 |
o ! measurements to detect AKI.
0.10 0.10 '
0.00 0.00 |
000 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Q.00 0.10 0.20 030 0.40 050 060 0.70 080 0.90 1.00
1- 1-Specificity
False Positive False Positive
Creadtinine
. 000 0.10 020 0.30 0.40 050 060 0.70 0.B0 0,90 1.00 000 010 020 030 040 050 060 070 080 090 1.00
s Poskin Fales Postive
UCDAVIS e

HEALTH
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Clinical Performance of AKI Biomarkers

1.00 - - -
090 ; Receiver Operator Characteristic (ROC)
080 BNP - Curves for AKI Biomarkers
070 |
0,60 y '
050 5] « BNP and NGAL appear to perform better than
h | UOP and creatinine.
0.30 {
0.20 . .
 So why not try to see if AI/ML can improve
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Al/ML Enhanced Point-of-Care AKI Detection

PRE-HOSPITAL SETTING

r ? ‘ POCT
Time of Inju o e TR Y i i
ol =t & BNP(?)
- 4 Hospital Admission
NO AKI AKI Lab |
NGAL I
4 % Creatinine UOP 0.5 I UOP <<0.5
TR TR Riiie BNP(?) t) mi/kg/hrand | mL/ke/hrand/or
*J normal creatinine |  creatinine >1.5x
POCT ENHANCED WORKFLOW A baseline
NO AKI AKI
P S s :
TRADITIONAL WORKFLO
Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326. 61
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Al/ML Enhanced Point-of-Care AKI Detection

PRE-HOSPITAL SETTING

" ? ] POCT
Time of Injury ‘_* 27 W 1N __llG_A.lg) _______
o= BNP(?)
- 4 Hospital Admission
NO AKI AKI Lab |
NGAL I
4 @ Creatinine UOP 0.5 I UOP <<0.5
: BNP(.?) t ml_/kg/hr and [ mL/kg/hr and/or
..................................... Pl e
POCT ENHANCED WORKFLOW A baseline
Department of Defense Challenge: Need means to NO AKI AKI
identify patients at risk for AKI to transport to appropriate : ,
facilities following battlefield injury. : :
@hrresssannfannannnnnnnsnnsnnnnnnl
? TRADITIONAL WORKFLOW
Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326. 62
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Al/ML Enhanced Point-of-Care AKI Detection

* Funded by DoD to develop
POC assay for NGAL.

* Multicenter study with UC
Davis and University of
Cincinnati.

» Studied both burned and non-
burned trauma patients.

« Machine learning employed to
analyze data to enable
battlefield decision making.

O TS
0 24 1015 i
View Storee Data

trol
) rala
eLap

\—

Biosensor
Al

i‘ v Wash
— Buffer and
s Loy A Substrate Secondary
Cartridge s Pouches Antibody
i
&fwm | = Plasma
P 4 Self- Filter
o Contained
s==_= Waste
Chamber
D On/Off Button

-, Power Supplv Port
RS9 ~ USB Ports

Touch Screen

Rechargeable
Interface .

7 Lithium-lon Battery

Barcode
Scanner
Bluetooth Load Single-
Module Use Cartridge
HEALTH Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326. 63



Al/ML Enhanced Point-of-Care AKI Detection

A Plot the receiver operator characteristics for the currently selected pipefine Piot the receiver operator charactenstics for the currently selected pipeline
(prevalence independent test) (prevalence dependent test)
Training Validation ROC Generalization ROC
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Al/ML Enhanced Point-of-Care AKI Detection

A Plot the receiver operator characteristics for the currently selected pipefine Plot the receiver operator characteristics for the currently selected pipeline
(prevalence independent test) (prevalence dependent test)
Training Validation ROC Generalization ROC
A . 1
Best Model (Log Regression) -
. 2
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. 0 3 e
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Emergence of Generative Al. Chatbots and Beyond

Chatbots are coming! @
Are you ready? ‘}

4 . :
ER R,

\
» :\:\
. ';':
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Role of Al Chatbots in Laboratory and Point-of-Care Testing

What NGAL values are predictive of AKI?

0 2242015 3
The specific NGAL values that are predictive of AKI may vary depending on the population
being studied and the clinical context, and there is currently no universally agreed-upon Start Assay
threshold for NGAL levels to predict AKIl. However, in general, higher MGAL values are

View Stored Data
associated with an increased risk of AKI.

Quality Control
For example, a meta-analysis of studies on NGAL and AKl found that an NGAL value of 150
ng/mL or higher was associated with an increased risk of AKI, with higher values indicating a
greater risk. However, it's important to note that this threshold may not be applicable in all o ]_O :[
clinical settings, and other factors such as patient age, comorbidities, and medications may

also affect the predictive value of NGAL.

Ultimately, the interpretation of NGAL levels in the context of AKI risk should be made by a
qualified healthcare provider who is familiar with the individual patient's medical history and

clinical status.

HEALTH Responses were based on ChatGPT-4



Role of Al Chatbots in Laboratory and Point-of-Care Testing

e Nasal swab
e Nasopharyngeal swab

= 3 dréps

NOTE: This figure is only used as a reference.

HEALTH Responses were based on ChatGPT-4

. Tell me how to use a COVID antigen test

Here are the general steps for using a COVID-19 antigen test:

First, wash your hands thoroughly with soap and water, or use hand sanitizer.

Open the test kit and remove the contents. The kit should contain a test device, a buffer
solution, a swab, and Instructions.

Use the swab provided to collect a sample from the inside of your nose. Insert the swab
Into one nostril and rotate it several times, then repeat the process in the other nostril,
Dip the swab into the buffer solution provided and mix it thoroughly for a few seconds to
ensure that the sample is well mixed.

Open the test device and add a few drops of the mixed sample to the test strip.

Wait for the recommended time, which is usually around 15-30 minutes, for the test result
to appear.

Read the test result according to the manufacturer’s instructions. A positive result
typically indicates the presence of the COVID-19 antigen, while a negative result indicates

the absence of the antigen.

It's important to note that the instructions may vary slightly depending on the specific test

kit being used, so it's important to carefully read and follow the instructions provided with

the kit. Additionally, while antigen tests can be useful in detecting COVID-19 infections, they
are not as accurate as PCR tests and should not be relied upon as the sole method of
diagnosis. If you have symptoms of COVID-19 or have been in close contact with someone
who has tested positive, you should seek advice from a healthcare professional on the

appropriate testing and management plan.
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Generative Al for Producing Synthetic Data?

ﬂmamnl science Research areas ~ Blog  Mews and features  Publications ~  Conferences Collaborations ~  Careers ~

» Synthetic data is a rapidly evolving field
whereby Al is used to produced unique

Prediction of tuberculosis using data based on real clinical data.
an automated machine learning | | |

) e - » This helps increase sample size, but
platfor v ﬁ?r models trained on also reduces upfront barriers in
synthetic data accessing clinical data (e.g., IRB, time,

By Hooman H. Rashidl, Imran H. Khan, Luke T. Dang, Samer Albahra, Ujpsal Ratan, Nikir Chadderwala, Wilson To |ab0r
Prathima Srinivas, Jeffery Wajda, Mam K. Tran .

PUBLICATION

2023

il | oo | (B she « Synthetic data is of course not perfect,
but serves as a starting point.

High-guality medical data is critical to the development and implementation of machine

Jowrnal
learning {ML) algorithms in healthcare, howewer, security, and privacy concerns continue

Journal of Pathology - = -

Informatics to limit access. We sought to determine the utility of "synthetic data” in training ML ¢ I—I keWISe1 Synthetlc data cou Id be used
algorithms for the detection of tuberculosis (TB) from inflammatory biomarker profiles, A to hel p Wlth AI/M L qual Ity Control and
retrospective dataset (A) comprised of 278 patients was used to generate synthetic ..
datasets (B, C, and D) for training models prior to secondary validation on a perhaps Serve aS a form Of prOfICIenCy
generalization dataset. ML madels trained and validated on the Datasat A (real) teStl ng

LAt Rashidi H, et al. J Pathol Inform 2022:13:10



Use of Synthetic Data for Developing AI/ML Algorithms to Predict
Tuberculosis

All Real Data (278 total, 199 TB+, 79 TB-)
I

A 4

v
Training/Initial Validation Datasets: Generalization Dataset (154 total, 137 TB+, 17 TB-)

Real Dataset A (124 total, 62 TB+, 62 TB-)

Performance Assessment of Models
Trained on Datasets A, B,C,and D
on ldentical Generalization Dataset

Synthetic Data Generation Using R
(Syn function of Synthpop package)

v v
Synthetic Dataset B Synthetic Dataset C Synthetic Dataset D Comparable Results for ML Models
(1x) (2x) (5x) Trained on Real-World (Dataset A) and
Synthetic (Datasets B,C and D)

J» s 1 v

Training of Models Using Traditional or Automated (MILO)
Machine Learning Methods

HEALTH Rashidi H, et al. J Pathol Inform 2022;13:10



Use of Synthetic Data for Developing AI/ML Algorithms to Predict

Tuberculosis

Model performances based on the

“real” secondary dataset

MIL(O’s best models
ROC-AUC

Accuracy

Sensitivity

Specificity

MILO's best RF models
ROC-AUC

Accuracy

Sensitivity

Specificity

Non-MILO RF models
ROC-AUC

Accuracy

Sensitivity

Specificity

Trained on dataset A
real data (95% CI)

MILO GEM
0.95 (0.87-1)
90 (84-95)
89 (83-94)
100 (81-100)
MILO RF
0.96 (0.82-1)
B0 (83-93)
28 (81-93)
100 (81-1007)
Non-MILO RF
0.97 (0.94-1)
77 (T0-84)
75 (66-82)
100 (81-1001)

Trained on dataset B (synthetic Trained on dataset C (synthetic

data x1) (95% CI)

MILO 5VM
0.83 (0.63-1)

91 (85-95)

93 (87-96)

77 (50-93)
MILO RF

0.77 (0.67-0.87)
71 (63-T8)

69 (60-76)

88 (64-99)
Mon-MILO RF
0.73 (0.60-0.88)
62 (54-69)

6l (52-69)

T1 (44-90)

data x2) (95% CI)

MILO DNN
0.91 (0.8-1)

71 (63-78)

67 (59-75)

100 (81-100)
MILO RF

0.87 (0.77-0.97)
74 (66-81)

72 (64-80)

88 (64-99)
Non-MILO RF
0.83 (0.71-0.92)
64 (56-72)

64 (55=72)

71 (44-90)

DMNMN = deep neural network, GBM = gradient boosting machine, RF = random forest, VM = support vector machine.

Trained on dataset D (synthetic
data x5) (95% CI)

MILO DNN
0.55 (0.48-0.62)
54 (46-62)

49 (40-58)

94 (71-99)
MILO RF

0.66 (0.52-0.8)
56 (458-64)

53 (44-61)

82 (57-96)
Non-MILO RF
0.68 (0.57-0.82)
39 (3147)

40 (32-49)

29 (10-56)

UCDAVIS
HEALTH
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Use of Synthetic Data for Developing AI/ML Algorithms to Predict

Tuberculosis

Model performances based on the
“real” secondary dataset

Trained on dataset A

real data (95% CI) data x1) (95% CI)

MILO"s best models MILO GBM MILO SVM
ROC-AUC 0.95 (0.87-1) 0.83 (0.63-1)
Accuracy 90 (84-95) 91 (85-95)
Sensitivity B9 (83-94) 93 (87-96)
Specificity 100 (81-100)

MILO's best RF models MILO RF MILO RF
ROC-AUC 0.96 (0.82-1) 0.77 (0.67-0.87)

Accuracy —-18)

Sepsabivity AU (60701

0.91 (0.8-1})

MILO RF
0.87 (0.77-0.97

Result showed that AI/ML models stlll exhibit reduced
performance when trained only on synthetic data, however,
performance also varies by Al/ML methods used. Using the
MILO automated ML platform, deep neural network (DNN)
using dataset C provided the least decrease in performance
compared to real world data.

MILO DNN

71 (63-78)
67 (59-75)
100 (81-100)

74 (66-81)

72 (64-80)

88 (64-99)
Non-MILO RF
0.83 (0.71-0.92)
64 (36-72)

64 (55-72)

71 (44-90)

DMNMN = deep neural network, GBM = gradient boosting machine, RF = random forest, VM = support vector machine.

Trained on dataset B (synthetic Trained on dataset C (synthetic Trained on dataset D (synthetic
data x2) (95% CI)

data x5) (95% CI)

MILO DNN
0.55 (0.48-0.62)
54 (46-62)

49 (40-58)

94 (71-99)
MILO RF

0.66 (0.52-0.8)
56 (458-64)

53 (44-61)

82 (57-96)
Non-MILO RF
0.68 (0.57-0.82)
39 (3147)

40 (32-49)

29 (10-56)

UCDAVIS
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Generative Al to Produce Medical Images?

° G e n erative AI Syste mS have been used to E Al and Chatbots » Explore Milsn With Al Testing aTutordot  Chatbot Promotsto Try AL Literary Skills  What Are the Dangers of AL?  Quiz
produce photo-realistic images. An A.I-Generated Picture Won an Art
Prize. Artists Aren’t Happy.
. “I won, and I didn't break any rules,” the artwork’s creator says.
* Images have been able to replicate real-world
objects and people. Bowrmw S 0 Qs

» Generative Al artwork has also competed and
won against human artists.

« However, the use of generative Al images in
healthcare is still evolving.

HEALTH Fan BE, et al. Am J Hematology 2023;98:1160-1162



Artificial Intelligence Generated Leukemia (Blast) Cells — Work In
Progress

‘L‘éﬁ{‘}’ﬂ,‘ Fan BE, et al. Am J Hematology 2023;98:1160-1162
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DIGITAL POC ) g e
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Sharable Home Testing Data?

Sleep Fitness Stress lliness
Restful Sleep Running Driving in Rush Hour Atrial Fibrillation
6o i |
150 l
‘ l - i ‘ u' ‘ “ l ‘b- J
- oo | 3 | lﬁ! e I
Hockey Microsoft interview Atrial Flutter
| 'Id lhllll '
UCDAVIS 26
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Sharable Home Testing Data?

« Wearable and home monitoring devices have become powerful
health data generating tools.

« These include existing smart watches and phones, but also
smart rings, and sleep monitoring systems that aggregate real-
time health data.

« Such data could be coupled to other testing modalities and
AI/ML to predict a range of diseases.

HEALTH 77



Open Source Intelligence = Catching Disasters Early?

 Shared data from POC devices and
even social media could be used for
population health.

* During the COVID-19 pandemic, social
media posts could predict where the
next outbreak will occur.

» Likewise, IVD manufacturers were
already using crowd-soured instrument
data to predict out COVID-19 outbreaks

based on Ct-values. o DXL 14 states where coronavirus cases might flare up next,
IRV LIER according to research into social-media posts about
« Same could be applied to de-identified SO symptoms, testing, and sick relatives
home or DTC data. Clusters Lowr Higher Lower

Severity 00 O O Severity Growth 000®

HEALTH https://www.businessinsider.com/social-media-may-show-where-virus-will-strike-next-2020-4 -



Future of Medical Care: Sensor Fusion

Parking-aid Roar
& Pre<crash Looking 76
Radar GH: Rader

F‘#hnﬂ—&d
& Pra-crash
Raciar

Laser Range
Sensar

Inertial
Motion
. Absolute Positioning

Augmented

GNSS

' Relative Positioning

Ultrasonic

Infrared

Sensor fusion is a process by which data from several
different sensors are "fused" to compute something more than
could be determined by any one sensor alone.
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“Medical” Sensor Fusion

Demographics
T e

H&P

Sensory
Input

Medical sensor future may be the future of patient care. Integration of multiple sources of medical information
(POCT, lab, smart devices, genetic testing, EHR data) into meaningful and actionable results.

HEALTH Tran NK, et al. Clin Chem. 2021,;68:125-133. 80



Leverage accurate and CONNECTED point-of-care t
for use in home, rural, and decentralized settings

esting devices

UCDAVIS
HEALTH
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Future Vision of Hybrid Automated Laboratory Testi

HEALTH
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Future Vision of Hybrid Automated Laboratory Testi

POCT no manifests in multiple forms including wearable
smart devices, molecular tests, and multiplex platforms.

HEALTH
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Future Vision of Hybrid Automated Laboratory Testing

o y '.»
Y
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Total laboratory automation still has a role. Focus on treating the sickest
patients with rapid, high volume, and consistent throughpuit.

UCDAVIS
HEALTH
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Future Vision of Hybrid Automated Laboratory Testing

How do we get patients or samples to
central laboratories?

o y '.»
Y
e 8
\l
. M A,
‘..:u_.u N T i e S

Total laboratory automation still has a role. Focus on treating the sickest
patients with rapid, high volume, and consistent throughpuit.

UCDAVIS
HEALTH
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Future Vision of Hybrid Automated Laboratory Testing

. \i -:'-‘-

Employ disruptive (automated) technologies such as drone aircraft. Speed and cost
savings by removing patient travel and couriers.

UCDAVIS
HEALTH
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Future Vision of Hybrid Automated Laboratory Testing
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Summary

 Atrtificial intelligence and machine learning is gaining traction in healthcare including
laboratory applications.

* Prior applications revolve around image recognition for blood/fluid image analysis, with
more recent uses for disease recognition from electronic health record data.

« Exciting areas of development for AI/ML includes the use for genomic data analysis,
spectral analysis, and clinical decision support for point-of-care testing.

« Synthetic data is also an exciting developing area, but has much room to improve.

« Generative Al with the use of chatbots is a very recent development that could be used to
help with clinical decision making, as well as operator training/education.

« Future of Al and ML in the laboratory and POCT settings will focus on medical sensor
fusion — integrating all sources of data to support testing operations.

HEALTH 89



Questions?

HEALTH %0
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