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Disclosures

• Consultant for Roche Diagnostics and Roche Molecular Systems

• Consultant for Radiometer

• Received speaking honoraria for Thermo Fisher, DiaSorin, and Nova Biomedical

• Co-inventor of MILO-ML automated ML software, and co-owner of MILO-ML, Inc

• UC Davis Health is a Roche Diagnostic Center of Excellence

• UC Davis is partnered with SpectraPass, LLC to develop a MALDI COVID test



3 

Learning Objectives

• Define artificial intelligence (AI) and machine learning (ML)

• Identify current uses of AI/ML in our daily lives

• Identify AI/ML techniques to detect or prevent testing errors

• Describe AI/ML techniques for image and pattern recognition for diagnostic purposes

• Discuss potential applications for AI generated synthetic data

• Discuss potential uses of AI “chatbots” for POCT applications
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Artificial Intelligence

What is Artificial Intelligence / Machine 
Learning?
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Artificial Intelligence

Machine Learning

What is Artificial Intelligence / Machine 
Learning?
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Artificial Intelligence

Machine Learning

Deep 

Learning

A broader branch of machine 

learning focused on learning 

data representations through 

layers of artificial neural 

neural networks. 

What is Artificial Intelligence / Machine 
Learning?
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Generative Artificial Intelligence

Generative AI is a type of AI capable of 

generating text, images or other media in 

response to user prompts. In short, it uses 

AI to learn patterns from training data to 

generate new data that has similar 

characteristics.

What is Artificial Intelligence / Machine 
Learning?
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AI/ML is Already Here and its 
Changing Our Lives!
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Common AI/ML Methods in Lab Medicine

• Linear Regression

• Logistic Regression

• Naïve Bayes Classifier

• k-nearest Neighbors

• Random Forest

• Support Vector Machine

• Gradient Boosted Machine

• Convolutional Neural Network

Parametric

Non-Parametric
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OPPORTUNITY EXAMPLES

Error Detection / Prevention Specimen integrity, mislabeled specimens, 

facial recognition 

Image / Pattern recognition Slide and fluid analysis

Multi-Analyte / Complex Data Analysis Mass spectrometry, “big data” applications 

(e.g., EHR data, genomics, etc)

Automated medical decision-making Point-of-care testing

AI/ML Laboratory Opportunities
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Hemolysis Detection by Machine Learning

Yang C, et al. Clin Chim Acta 2022;531:254-260.
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Hemolysis Detection by Machine Learning

• A dataset of 16,427 sample images were collected. Samples 

divided into training and test datasets. 

• Deep learning algorithms achieved an area of the curve 

0.99 with a sensitivity of 97% and specificity of 94.2%.

• When the algorithm was applied, serum indices tests were 

reduced for 26.76% (n = 1225)

• Among the 26.76% of samples, 1 sample was misclassified 

for predicted serum indices lower than the lower limit but 

measured serum indices greater than the cutoff values, 3 

samples were misclassified for predicted serum indices 

greater than the upper limit but measured serum indices 

lower than the cutoff values

Yang C, et al. Clin Chim Acta 2022;531:254-260.
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Study Methods: Overall Design



Study Methods
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Methods of Analysis including AI/ML Techniques
What is Support Vector Machine (SVM)
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Results – Predictive Power of AI/ML (SVM) for WBIT Events

SVM performed better than 

other traditional statistical 

methods such as logistic 

regression when 

evaluating lab value 

differences alone and/or 

with values. 

Rosenbaum MW, et al. Am J Clin Pathol. 2018 Oct 24;150(6):555-566.
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OPPORTUNITY EXAMPLES

Error Detection / Prevention Specimen integrity, mislabeled specimens, 

facial recognition 

Image / Pattern recognition Slide and fluid analysis

Multi-Analyte / Complex Data Analysis Mass spectrometry, “big data” applications 

(e.g., EHR data, genomics, etc)

Automated medical decision-making Point-of-care testing

AI/ML Laboratory Opportunities
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Hematology Image Recognition
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Automated Urinalysis Image Recognition
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OPPORTUNITY EXAMPLES

Error Detection / Prevention Specimen integrity, mislabeled specimens, 

facial recognition 

Image / Pattern recognition Slide and fluid analysis

Multi-Analyte / Complex Data Analysis Mass spectrometry, “big data” applications 

(e.g., EHR data, genomics, etc)

Automated medical decision-making Point-of-care testing

AI/ML Laboratory Opportunities
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Artificial Intelligence for Genomic Testing

Rusch M, et al. Nat Communications 2018;9:3962.
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AI/ML Enhanced Mass Spec COVID-19 Testing Solution

Tran NK, et al. Sci Rep 2021;11:8219

• As a way to bypass COVID-19 molecular and antigen testing supply shortages, UCDH and partners with 

SpectraPass developed a novel mass spectrometry-based COVID-19 test that also leveraged machine 

learning. 

• Machine learning as based on the in-house developed Machine Intelligence Learning Optimizer (MILO) 

platform. 
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MALDI-TOF-MS Based COVID-19 Testing Solution

MALDI-TOF-MS provides means to detect host-response profiles (proteins) 

from clinical samples. Low cost, fast, high-throughput, and can be random 

access. 

Tran NK, et al. Sci Rep 2021;11:8219
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Machine Learning Enhanced MALDI-TOF-MS-Based 

Detection of COVID-19

Mass spectrometry is a unique way to analyze samples of various kinds. For 

COVID-19, anterior nares proteins detected by MALDI-TOF-MS produces 

hundreds of peaks. How do you analyze this data??

Tran NK, et al. Sci Rep 2021;11:8219
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Our MALDI study also identified 14,270 endogenous peptides across 1,198 protein groups. This ”Reactome” figure 

highlights protein association with certain pathways. Yellow highlights indicate high association. Darker shades of gray 

indicate poor (non-statistically significant) pathway association (Tsai H, et al. ACS Omega 2022;20:17462)
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49,940 models

~400 hours (~4 months)

ROC-AUC 94

MORE MODELS – LESS TIME – MORE 

OPPORTUNITIES

Tran NK, et al. Sci Rep 2020;10:12354
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? ? Are there any other potential models?

49,940 models

~400 hours (~4 months)

ROC-AUC 94

MORE MODELS – LESS TIME – MORE 

OPPORTUNITIES

Tran NK, et al. Sci Rep 2020;10:12354
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? ? Are there any other potential models?

MILO found the model identified via 

manual programming

284,670 models

<24 hours

ROC-AUC 94

MORE MODELS – LESS TIME – MORE 

OPPORTUNITIES

Tran NK, et al. Sci Rep 2020;10:12354

49,940 models

~400 hours (~4 months)
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? ? Are there any other potential models?

MILO found six additional better 

models not found by the Current 

Traditional ML approach

Limitations of manual programming

• Time

• Number of combinations

• Bias towards ”preferred methods”

• Bias towards feature combinations

284,670 models

<24 hours

ROC-AUC 94

ROC-AUC 97 ROC-AUC 98 ROC-AUC 98

ROC-AUC 98 ROC-AUC 98 ROC-AUC 94

MORE MODELS – LESS TIME – MORE 

OPPORTUNITIES

Tran NK, et al. Sci Rep 2020;10:12354

49,940 models

~400 hours (~4 months)
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• Pilot study was based on both archived and 
prospectively collected anterior nares swab 
specimens

• Conducted from Aug to Dec 2020

• NGS performed to identify presence of non-
COVID-19 pathogens, as well as type 
COVID-19 variants.

• Goal of the study was to confirm we can 
readily differentiate between COVID-19 from 
normal patients, including symptomatic vs. 
asymptomatic cases. 

Tran NK, et al. Sci Rep 2021;11:8219

Machine Learning Enhanced MALDI-TOF-MS-Based 

Detection of COVID-19: Pilot Performance



34 

Machine Learning Enhanced MALDI-TOF-MS-Based 

Detection of COVID-19: Pilot Performance

Tran NK, et al. Sci Rep 2021;11:8219

Best Model (Neural Network)

AUC: 0.9985

Accuracy: 98.3

Sensitivity: 100%

Specificity: 96.0%

Best Model (Gradient Boosted Machine)

AUC: 0.9904

Accuracy: 96.6%

Sensitivity: 98.5%

Specificity: 94.0%
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Proving to Ourselves this is Real – Further Generalization and 

Validation!

COVID

(n=50)
No COVID

(n=144)

Includes 

Vaccinated & ED 

cases

Initial dataset of 

COVID & Non-COVID 

MALDI cases split into Datasets A & B

(n=361 : 125 COVID+ & 236 COVID-)

Dataset C: Randomly selected 

Balanced Training & Initial validation 

test set to build and to do the initial 

validation testing 

(with an 80%-20% split & k-fold of 10)

(n=167)

Dataset D: Generalization test set 

representing the remaining cases 

used as the secondary test set 

(assessing their true performance) 

(n=194)
COVID

(n=75)

No COVID

(n=92)

Includes vaccinated & 

ED cases 

Platform A generated ML Models 

Initially validated from subset of 

Dataset C are then secondarily 

tested on the Dataset D to assess 

their true performance

• A second study was started in early 
2021 using the original 199 
subjects, plus a more 
heterogeneous group to total 361 
patients.

• Added a second site (Las Vegas)

• Included vaccinated individuals

• Detected some non-COVID-19 
pathogens by NGS (n = 3) and 
several SARS-CoV-2 variants 
(alpha, gamma, delta, iota, and 
others)

Rashidi H, et al. PLOS One 2022;17(7): e0263954.
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• MILO outperformed the 
competing autoML platform.

• Logistic regression produced 
the optimal platform:

• AUC: 0.989

• Accuracy: 92.8%

• Sensitivity: 100%

• Specificity: 90.3%

Rashidi H, et al. PLOS One 2022;17(7): e0263954.

Proving to Ourselves this is Real – Further Generalization and 

Validation!
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Conceptual Workflow of a Machine Learning Enhanced 

MALDI-TOF-MS-Based Method for Detecting COVID-19:
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Can we use this ML-enhanced 

mass spectrometry for other 

sample types?
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Breath Samples as a New 

Specimen Paradigm

• Volatile organic chemicals (VOC) exhaled by 

patients could be collected and analyzed to predict 

various diseases.

• When aided by machine learning, VOCs detected by 

mass spectrometry could be very specific and 

differentiate between infectious diseases. 
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Breath Samples as a New 

Specimen Paradigm

• Volatile organic chemicals (VOC) exhaled by 

patients could be collected and analyzed to predict 

various diseases.

• When aided by machine learning, VOCs detected by 

mass spectrometry could be very specific and 

differentiate between infectious diseases. 

• Our team at UC Davis Health was able to show VOC 

(63 compounds in total) detection aided by machine 

learning could even differentiate between SARS-

CoV-2 variants (accuracy 82-84%, specificity of 

79%).

McCartney MM et al. Comm Med 2022;2:158. 
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Sepsis: The Clinical Problem

• Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection

• Over 750,000 patients in the United States experience sepsis each year.

• Mortality ranges from 28-50% and can be as high as 90% in cases of septic shock. 

https://business.kaiserpermanente.org/
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Multicenter Burn Sepsis Data

ClinicalTrials.gov Identifier: NCT01140269

Overview:

• Burn sepsis is hard to detect and current 

criteria exhibit poor sensitivity and 

specificity. 

• Dataset derived from an American Burn 

Association / Department of Defense 

funded sepsis study (n = 218 patients).

Tran NK, et al. Sci Rep 2020;10:12354
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Test Category Test Name

Chemistry BMP, CMP

Coagulation INR, aPTT

Hematology CBC w/ auto diff

Microbiology Bacterial and fungal 

culture, plus MALDI-TOF-

MS

Acid-Base Blood gases

Molecular PCR pathogen 

identification

*Plus vital signs paired to laboratory results

Overview:

• Burn sepsis is hard to detect and current 

criteria exhibit poor sensitivity and 

specificity. 

• Dataset derived from an American Burn 

Association / Department of Defense 

funded sepsis study (n = 218 patients).

• Daily vitals and routine lab results were 

collected. Plus PCR infectious disease 

data. 

Tran NK, et al. Sci Rep 2020;10:12354

Multicenter Burn Sepsis Data
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Burn Sepsis Prediction with Traditional Statistics

Tran NK, et al. Sci Rep 2020;10:12354

Greenhalgh DG, et al. J Burn Care Res 2007;28:776-790

American Burn Association (ABA) 

Sepsis Criteria:

Temp: >39 C or <36.5 C

Heart Rate: >110 beats/min

Respiratory: >25 breaths/min

WBC: Not used

Platelet Count: <100,000 cells/uL
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Burn Sepsis Prediction with Traditional Statistics

Tran NK, et al. Sci Rep 2020;10:12354

Greenhalgh DG, et al. J Burn Care Res 2007;28:776-790

American Burn Association (ABA) 

Sepsis Criteria:

Temp: >39 C or <36.5 C

Heart Rate: >110 beats/min

Respiratory: >25 breaths/min

WBC: Not used

Platelet Count: <100,000 cells/uL

Sensitivity and Specificity of ABA Criteria on its 

own (no machine learning) is 75.0% and 65.7% 

respectively!
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Tran NK, et al. Sci Rep 2020;10:12354

Burn Sepsis Prediction with Traditional Statistics
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Sepsis Prediction with MILO Algorithm(s)

Tran NK, et al. Sci Rep 2020;10:12354
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Sepsis Prediction with MILO Algorithm(s)

Tran NK, et al. Sci Rep 2020;10:12354

Best Model (K-Nearest Neighbor)

AUC: 0.9563

Accuracy: 89.7%

Sensitivity: 95.8%

Specificity: 87.8%
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Example Comparing AI/ML Performance versus Traditional 
Sepsis Criteria for Burn Sepsis

MILO AI/ML ABA Criteria SEPSIS-3

Features 

(Predictors)

Hgb, BUN, TCO2, temperature, 

heart rate

Temperature, heart rate, 

platelet count, respiratory rate

SOFA score parameters

Area Under the 

ROC

0.96 0.76 0.55

Sensitivity (%) 95.8 75.0 61.2

Specificity (%) 87.8 65.7 55.1

Abbreviations: ABA, American Burn Association; SOFA, sequential organ failure assessment score.

SOFA Score: Glascow Coma Score, blood pressure, PaO2/FiO2 ratio, creatinine, platelets, total bilirubin, 

respiratory rate. 

Tran NK, et al. Sci Rep 2020;10:12354
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OPPORTUNITY EXAMPLES

Error Detection / Prevention Specimen integrity, mislabeled specimens, 

facial recognition 

Image / Pattern recognition Slide and fluid analysis

Multi-Analyte / Complex Data Analysis Mass spectrometry, “big data” applications 

(e.g., EHR data, genomics, etc)

Automated medical decision-making Point-of-care testing

AI/ML Laboratory Opportunities



52 

How about AI/ML for Point-of-Care Testing?

Point-of-Care Testing (POCT) is defined as medical testing 

at or near the site of patient care

Includes:

• Disposable

• Handheld

• Portable

• Transportable

• Benchtop

• Monitoring

• Smart devices
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Could AI/ML be used to augment POCT result interpretation?

POINT-OF-CARE DIAGNOSTIC WORKFLOW

Accelerated Therapeutic Turnaround Time

Limited by user expertise
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Burn-Related Acute Kidney Injury

Sen S, et al. J Surg Res 2015;196:382-387.

Up to 58% burn patients 

experience AKI. Causes:

• Sepsis

• Nephrotoxic medications

• “Burn Shock”

KDIGO AKI Criteria
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Up to 58% burn patients 

experience AKI. Causes:

• Sepsis

• Nephrotoxic medications

• “Burn Shock”

KDIGO AKI Criteria
Biomarker Pros Cons

Creatinine Easy to obtain

Common test

Familiarity

Half-life is 4 hours, 

requires – changes my 

not be discernable for 

up to 12 hours

Up to 70% of nephrons 

can be damaged to see 

any real change.

Urine Output Easy to obtain

Common test

Familiarity

AKI may already be 

occurring before urine 

output decreases

GFR Easily 

estimated by 

creatinine 

values

GFR may not change 

too much early on due 

to complex 

autoregulation.

Biomarkers for Detecting Acute Kidney Injury

Sen S, et al. J Surg Res 2015;196:382-387.
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Biomarkers for Detecting Acute Kidney Injury

Neutrophil Gelatinase Associated Lipocalin

Sen S, et al. J Surg Res 2015;196:382-387.

Urine NGAL very specific, but plasma 

NGAL not. Not all patients make urine on 

demand…
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Biomarkers for Detecting Acute Kidney Injury

Natriuretic Peptides for Cardio-Renal Syndrome

• Acute kidney injury can result 

in acute heart dysfunction.

• Heart dysfunction results in 

the release of natriuretic 

peptides such as BNP and NT-

proBNP.

• The use of both plasma 

NGAL and BNP/NT-proBNP 

improves prediction of AKI.

• Without BNP, plasma NGAL 

specificity was about 90.9% 

with an area under the ROC 

curve of 0.82.

Sen S, et al. J Surg Res 2015;196:382-387.

Khawaja, et al. Biomarker Research 2019;7:4
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Receiver Operator Characteristic (ROC) 

Curves for AKI BiomarkersBNP NGAL

UOP Creatinine

Tran NK, et al. Burns 2019;45:1350.

Clinical Performance of AKI Biomarkers
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Receiver Operator Characteristic (ROC) 

Curves for AKI Biomarkers

• UOP and creatinine do not perform well at all, 

despite being the most common 

measurements to detect AKI. 

BNP NGAL

UOP Creatinine

Clinical Performance of AKI Biomarkers

Tran NK, et al. Burns 2019;45:1350.
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Receiver Operator Characteristic (ROC) 

Curves for AKI Biomarkers

• BNP and NGAL appear to perform better than 

UOP and creatinine.

• So why not try to see if AI/ML can improve 

performance of these four biomarkers?

BNP NGAL

UOP Creatinine

Clinical Performance of AKI Biomarkers

Tran NK, et al. Burns 2019;45:1350.
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AI/ML Enhanced Point-of-Care AKI Detection

Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326.
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AI/ML Enhanced Point-of-Care AKI Detection

Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326.

Department of Defense Challenge: Need means to 

identify patients at risk for AKI to transport to appropriate 

facilities following battlefield injury.
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AI/ML Enhanced Point-of-Care AKI Detection

Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326.

• Funded by DoD to develop 

POC assay for NGAL.

• Multicenter study with UC 

Davis and University of 

Cincinnati.

• Studied both burned and non-

burned trauma patients.

• Machine learning employed to 

analyze data to enable 

battlefield decision making. 



64 Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326.

AI/ML Enhanced Point-of-Care AKI Detection
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Best Model (Log Regression)

AUC: 0.9571

Accuracy: 96.0%

Sensitivity: 92.3%

Specificity: 97.7%

Rashidi HH, et al. Arch Pathol Lab Med. 2021;145(3):320-326.

AI/ML Enhanced Point-of-Care AKI Detection
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Emergence of Generative AI: Chatbots and Beyond



67 

Role of AI Chatbots in Laboratory and Point-of-Care Testing

Responses were based on ChatGPT-4
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Role of AI Chatbots in Laboratory and Point-of-Care Testing

Responses were based on ChatGPT-4



69 

Generative AI for Producing Synthetic Data?

Rashidi H, et al. J Pathol Inform 2022;13:10

• Synthetic data is a rapidly evolving field 

whereby AI is used to produced unique 

data based on real clinical data.

• This helps increase sample size, but 

also reduces upfront barriers in 

accessing clinical data (e.g., IRB, time, 

labor).

• Synthetic data is of course not perfect, 

but serves as a starting point.

• Likewise, synthetic data could be used 

to help with AI/ML quality control and 

perhaps serve as a form of proficiency 

testing. 
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Use of Synthetic Data for Developing AI/ML Algorithms to Predict 
Tuberculosis

Rashidi H, et al. J Pathol Inform 2022;13:10
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Use of Synthetic Data for Developing AI/ML Algorithms to Predict 
Tuberculosis

Rashidi H, et al. J Pathol Inform 2022;13:10
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Use of Synthetic Data for Developing AI/ML Algorithms to Predict 
Tuberculosis

Rashidi H, et al. J Pathol Inform 2022;13:10

Result showed that AI/ML models still exhibit reduced 

performance when trained only on synthetic data, however, 

performance also varies by AI/ML methods used. Using the 

MILO automated ML platform, deep neural network (DNN) 

using dataset C provided the least decrease in performance 

compared to real world data. 
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Generative AI to Produce Medical Images?

Fan BE, et al. Am J Hematology 2023;98:1160-1162

• Generative AI systems have been used to 

produce photo-realistic images.

• Images have been able to replicate real-world 

objects and people.

• Generative AI artwork has also competed and 

won against human artists.

• However, the use of generative AI images in 

healthcare is still evolving.
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Artificial Intelligence Generated Leukemia (Blast) Cells – Work in 
Progress

Fan BE, et al. Am J Hematology 2023;98:1160-1162
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Sharable Home Testing Data?DIGITAL POC

BIOMARKERS?
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Sharable Home Testing Data?
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Sharable Home Testing Data?

• Wearable and home monitoring devices have become powerful 

health data generating tools. 

• These include existing smart watches and phones, but also 

smart rings, and sleep monitoring systems that aggregate real-

time health data. 

• Such data could be coupled to other testing modalities and 

AI/ML to predict a range of diseases. 
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Open Source Intelligence → Catching Disasters Early?

https://www.businessinsider.com/social-media-may-show-where-virus-will-strike-next-2020-4

14 states where coronavirus cases might flare up next, 
according to research into social-media posts about 
symptoms, testing, and sick relatives

• Shared data from POC devices and 

even social media could be used for 

population health.

• During the COVID-19 pandemic, social 

media posts could predict where the 

next outbreak will occur.

• Likewise, IVD manufacturers were 

already using crowd-soured instrument 

data to predict out COVID-19 outbreaks 

based on Ct-values.

• Same could be applied to de-identified 

home or DTC data. 
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Future of Medical Care: Sensor Fusion

Sensor fusion is a process by which data from several 

different sensors are "fused" to compute something more than 

could be determined by any one sensor alone. 
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H&P

Demographics

Medical sensor future may be the future of patient care. Integration of multiple sources of medical information 

(POCT, lab, smart devices, genetic testing, EHR data) into meaningful and actionable results. 

“Medical” Sensor Fusion

Tran NK, et al. Clin Chem. 2021;68:125-133.
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Future Vision of Hybrid Automated Laboratory Testing

Leverage accurate and CONNECTED point-of-care testing devices 

for use in home, rural, and decentralized settings
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Future Vision of Hybrid Automated Laboratory Testing
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Future Vision of Hybrid Automated Laboratory Testing

POCT no manifests in multiple forms including wearable 

smart devices, molecular tests, and multiplex platforms. 
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Total laboratory automation still has a role. Focus on treating the sickest 

patients with rapid, high volume, and consistent throughput.

Future Vision of Hybrid Automated Laboratory Testing
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Total laboratory automation still has a role. Focus on treating the sickest 

patients with rapid, high volume, and consistent throughput.

How do we get patients or samples to 

central laboratories?

Future Vision of Hybrid Automated Laboratory Testing
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Employ disruptive (automated) technologies such as drone aircraft. Speed and cost 

savings by removing patient travel and couriers. 

Future Vision of Hybrid Automated Laboratory Testing
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…and self driving cars

Future Vision of Hybrid Automated Laboratory Testing
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Summary

• Artificial intelligence and machine learning is gaining traction in healthcare including 

laboratory applications. 

• Prior applications revolve around image recognition for blood/fluid image analysis, with 

more recent uses for disease recognition from electronic health record data.

• Exciting areas of development for AI/ML includes the use for genomic data analysis, 

spectral analysis, and clinical decision support for point-of-care testing.

• Synthetic data is also an exciting developing area, but has much room to improve.

• Generative AI with the use of chatbots is a very recent development that could be used to 

help with clinical decision making, as well as operator training/education. 

• Future of AI and ML in the laboratory and POCT settings will focus on medical sensor 

fusion – integrating all sources of data to support testing operations.
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Questions?
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