Practical Tips for POCT

James H. Nichols, Ph.D., DABCC, FACB
Professor of Pathology, Microbiology and Immunology
Medical Director, Clinical Chemistry
Vanderbilt University School of Medicine
Nashville, Tennessee

james.h.nichols@vanderbilt.edu
Objectives

• Define POCT
• Examine quality concerns with POCT
• Offer tips for managing POCT
POCT Definition

• Clinical laboratory testing conducted close to the site of patient care, typically by clinical personnel whose primary training is not in the clinical laboratory sciences or by patients (self-testing).

• POCT refers to any testing performed outside of the traditional, core or central laboratory.

POCT is a Complex System

• Laboratory
 – One site
 – Limited instrumentation to perform bulk of testing
 – Limited staff, focused on same equipment daily
 – Staff trained in laboratory skills

• POCT
 – Dozens of sites, hundreds of devices and thousands of operators
 – Staff are clinically focused on patient not on equipment
 – Staff do not have laboratory training background
 – Testing delegated to lower level staff (TAs, MAs)
Tip: Develop a POC Structure

• The number of devices people and testing performed POCT in an institution requires an organization and management structure
• Many institutions have a POC Coordinator (often a lab staff) and POCT Committee to oversee practice
• POCT Committee can depersonalize the review process for test approval, inspection preparation and actions to deficiencies.
Why Do We Need a POCT Program?

• Organize the activities involving POCT
• Meet federal and accreditation regulations
• Identify what tests are conducted outside the formal core laboratory
• Approve/disapprove new test requests
• Determine who is performing POCT
• Document staff competency
• Manage POCT test results
POCT Management

- Medical Director
- POCT Coordinator
- POCT Staff
- POCT Staff
- POCT Staff
- POCT Staff
- Affiliate Hospitals and Clinics
- POCT Committee
POCT Management
Vanderbilt Medical Center

Vanderbilt POCT

Rehabilitation
Ambulances
Hillsboro Clinic
Helicopters
Williamson County Medical Center
Vanderbilt Medical Group Practices
Vanderbilt Psychiatric Hospital
Children’s Hospital
One Hundred Oaks Clinic
Vanderbilt Medical Center
<table>
<thead>
<tr>
<th>Department / Area / Clinic</th>
<th># [Certificates filed under cost center #]</th>
<th>Name of Accrediting/Certifying Agency</th>
<th>Medical Director</th>
<th>D. Trainer</th>
<th>PHONE</th>
<th>Address</th>
<th>Test Performed</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FAMILY PRACTICE (First Floor)</td>
<td>20323XXXX</td>
<td>CLIA 44XXXX Exp.7/1 1/13</td>
<td>Dr. Warren MD</td>
<td>Louis PC</td>
<td>555-1234</td>
<td>, TN. 37067</td>
<td>Flu, strep, Clinitek Status, urine pregnancy, Sure Step glucose, Hemocue, Hemocult, PPM KOH, wet preps,</td>
<td>Loretta Lynn</td>
</tr>
<tr>
<td>2. PEDIATRIC CLINIC (Second Floor)</td>
<td>20311XXXX</td>
<td>CLIA 44XXXX Exp. 2/14/14</td>
<td>Dr. Miller MD</td>
<td>Kim Jones RN</td>
<td>555-2121</td>
<td></td>
<td>Clinitek Status Urine, DCA HgBA1C Advantage Sure Step, Glucose, Flu, Strep, Hemocult</td>
<td>Ms. Price</td>
</tr>
<tr>
<td>3. INTERNAL MEDICINE (Third Floor)</td>
<td>20322XXXX</td>
<td>CLIA 44XXXX Exp. 7/10/13</td>
<td>Dr. Smith MD</td>
<td>Ron Night</td>
<td>555-0102</td>
<td>TN 37067</td>
<td>Flu, strep, Clinitek Status, urine pregnancy, Sure Step glucose, Hemocult PPM KOH, wet preps</td>
<td>Jackie Chan</td>
</tr>
<tr>
<td>GI CLINIC (third floor)</td>
<td>20326XXXX</td>
<td>GI I IM share lab CLIA</td>
<td>Dr. Jones MD</td>
<td>POCT</td>
<td>555-1212</td>
<td>Third Floor Franklin TN 37067</td>
<td>Hemocult</td>
<td>Lori Done</td>
</tr>
</tbody>
</table>
Tip: Standardize Methods

• Standardize instrumentation and methods across the health system
 – Minimizes number of different devices
 – One policy can be shared amongst sites
 – Central management system (ie oversight and data management)
 – Same methodology, clinical limitations
 – Share reference intervals (normal values)
 – Simplifies training and competency, float staff
Continuity of Care

ER → OR

ICU

Unit

Home → Clinic

POCT

Critical Care

Core Lab

POL - Clinic
Tip: Define Staff Roles for POCT

• Nursing and Clinical Staff:
 – Ensure staff are trained/competent
 – Perform and document device QC
 – Rotate stock/destroy expired reagents
 – all other aspects of the day-to-day management of the testing process

• Laboratory:
 – Drafts procedures and training checklists
 – Validates new reagent/QC lots
 – Arranges for repair/replacement of devices
 – Provides technical, training, consultative and QI support of clinical staff and testing process
Case Study: Understanding Staff Roles

• Who has heard the similar statements?
 – “I don’t have the staff to take care of this”
 – “POCT is a laboratory function”
 – “I’m being forced to do POCT by the clinicians”
 – “I’ve never hurt anyone doing it this way before, why should I change my practice?”
 – “Quality reports criticize the way I do my job.”
Nursing Roles

- Physical care
- Emotional care
- Spiritual care
Technology and Nursing: A “Love-Hate” Relationship

• Technologic Optimism: Technology seen as linked to the science of nursing

• Technologic Romanticism: Technology seen as detracting from the art of nursing
Technologic Optimism: Bedside Testing

• Easily assimilated into patient care
• More rapid clinical decision-making
• Decreased cost to patient
Technologic Romanticism: Bedside Testing

- Not easily assimilated into patient care
- Time- and labor-intensive for nursing
- Takes nurses away from the bedside
Multidisciplinary Teams and Point-of-Care Testing

Nursing

Laboratory

Nursing outcomes

Laboratory outcomes
Interdisciplinary Teams and Point-of-Care Testing

Nursing

Laboratory

Patient outcomes
POCT: Nursing Perspectives

- Restricted tasks
- Large test runs: “factory environment”

Laboratory

Nursing

- Broader responsibilities
- Limited test runs: “boutique environment”
POCT: Nursing Perspectives

Laboratory
- Process oriented
 - Calibration
 - Accuracy
 - Precision

Nursing
- Outcome oriented
 - Time spent with patient
 - Patient goal achievement
Building an Interdisciplinary Team

Lab personnel

Nursing & Medicine
Service Standards

Customer Relations

- Respect
- Courtesy
- Acknowledge different perspectives
Acknowledging Differences

• Define quality in “subjective” terms
• Value clinical utility of results, convenience, “real-time” evaluation

Nursing & Medicine
Acknowledging Differences

• Define quality in “objective” terms
• Value that which is constant, measurable, technically-based
Service Standards

Teamwork & Communication

- Teamwork is “work”
- Acknowledgment of expertise
- Collegiality
- Information exchange
Service Standards

Self-Management & Ownership/Accountability

• Ownership of discipline-specific responsibilities
• Involvement of all stakeholders
Tip: Understand the Nursing Perspective

• Think like a nurse not a laboratorian!
• Training, policies, everything must be written to a nursing perspective
• Focus on patient care
• Emphasize the “Why”, let staff figure out the “How”
 – Why QC is important
 – Why positive patient ID is necessary
 – Emphasize POCT a routine patient care
Tip: Understand Your POCT

• Research testing – results of laboratory test will not be used for patient care, none of the clinicians managing patient have access to test results (CLIA’88 does not apply)

• Clinical testing – test results will be used for diagnosis or change in management of the patient (CLIA’88 rules apply)
 – Pregnancy test to screen patient for drug trial
 – Creatinine, liver enzymes to monitor patients on trial
Case Study: Cardiology Research

• Waived coagulation device to be used to manage dosage of coumadin
• Cardiologist claims it is research, so don’t need any additional QA/QC documentation.
• Device is waived, so test is “waived” of all regulations
• The hospital is CAP inspected, so there are additional concerns beyond CLIA license and following manufacturer’s instructions
Case Study: Cardiology Research

• Waived device generates a coded comment that researcher calls to sponsor for treatment instructions (only way to blind clinicians to coumadin vs placebo)
• Offer to get research a “waived” CLIA to conduct testing
• Cardiologist very heated, unwilling to listen to regulations, claims lab is overinterpreting regulations and leaves meeting
• Lab follow-up with CMS – test is indeed clinical not research, and because the sponsor has modified the device it is no longer waived (ie high complexity testing). This prohibits the physician from applying test to a “waived” research CLIA certificate.
• Turned issue over to research administration/Academic Affairs in conjunction with POCT committee limited testing in this setting and required separate CLIC license
Tip: Utilize POCT Data Management

• Limit MANUAL Testing!
• Computerized POCT devices automate the QA documentation (and billing) process by storing patient and operator identification with patient result, time and date.
• Electronic POCT data can be transmitted to the medical record, hospital information systems or other databases.
• Computerized POCT devices mandate performance of QC and lockout if not performed successfully. Operator lockout ensures only trained and competent staff perform testing.
• Electronic data streamlines the quality review of large amounts of data.
• Possibility of automating data reduction and alert algorithms to highlight problems and trends.
Operator Certification

Baystate Medical Center » All Departments » All Locations

Search Criteria:

- Instrument: PCx
- Last Name: (blank)
- Operator ID: (blank)
- Expiration Date: 31

Display Records

2420 Records Found Displaying Page 1 of 25

E-Mail

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Operator ID</th>
<th>Original Cert. Date</th>
<th>Cert. Date</th>
<th>Recent Interval</th>
<th>Exp. Date</th>
<th>Auto Recert</th>
<th>Last Good QC</th>
<th>Last Pat. Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00341</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>02/11/2002</td>
<td>02/11/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02634</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>12/17/2001</td>
<td>12/17/2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03888</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>03/07/2002</td>
<td>03/07/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04901</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>03/08/2002</td>
<td>03/08/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05518</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>03/14/2002</td>
<td>03/14/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08117</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>02/14/2002</td>
<td>02/14/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09500</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>02/11/2002</td>
<td>02/11/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04017</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>11/16/2001</td>
<td>11/16/2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41897</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>01/09/2002</td>
<td>01/09/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08025</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>03/03/2002</td>
<td>03/03/2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41253</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>03/04/2002</td>
<td>03/04/2002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ICU Workload

Location Choice: Baystate Medical Center - ICU/NEURO - ICU
Instrument: PCx
Sort By: Instrument Serial No.
Date Range: 03/01/2003 to 03/31/2003

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCx</td>
<td>M10370048</td>
<td></td>
<td>32</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>PCx</td>
<td>M11260030</td>
<td></td>
<td>26</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>PCx</td>
<td>M12080023</td>
<td>M12080023</td>
<td>34</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICU Totals</th>
<th>102</th>
<th>175</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>4</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU/NEURO Totals</td>
<td>102</td>
<td>175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>277</td>
</tr>
<tr>
<td>Baystate Medical Center Totals</td>
<td>102</td>
<td>175</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>277</td>
</tr>
</tbody>
</table>
Tip: Use Electronic Databases, Distribute Responsibilities, Reduce Paperwork

Nursing Unit Employee Records

POCT Policies

POCT Coordinator

Device Validations

Lot checks and management

Training/Competency records

Nursing Unit Compliance Trends

POCT Database

Quality Control Records

Operator Competency Dates
Self-Management

• While POCT is a partnership between lab and clinical services, inspectors hold the site performing the test and CLIA director responsible
• The lab can’t hold an operator’s hand 24- hrs a day, sites must take charge
• Self-management establishes staff roles, defines responsibilities and sets expectations for performance in a collegial manner
• Issues handled through the staff’s manager, not the lab, promotes mutual respect while emphasizing patient care
Tip: Promote Self-Inspection

• Key to self-management is site self-inspection
• Sites utilize same checklist that accreditation inspectors would use to grade compliance
• So, compliance tied directly to regulations, not something lab is requiring of staff
• Emphasizes staff awareness of regulations
• Sites that regularly self-inspect demonstrate the most QA improvement
Baystate Health System/Self Inspection Worksheet

Site ____________ Date of Review ____________
Signature ________________________________

<table>
<thead>
<tr>
<th>GLUCOSE</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC Dated and In Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Lot #:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Lot #:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Clerical / Errors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEMOCULT</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slides Stored Properly and Not Exp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Result/Pos & Neg QC Charted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH / NITRAZINE PAPER</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper and Buffers dated & in date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Performed as Required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i-STAT</th>
<th>REVIEW</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-STAT Cartridges Dated / Not Exp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tip: Identify Challenging Sites
Case Study: The ED

• POCT staff conducts site inspections monthly
• ED low compliance with key benchmarks
 – Frequent POCT identification errors
 – Missed days for temperature monitoring
 – Outdated reagents/controls
 – Failure to comment failed QC, out of range result communication, etc.
 – Poor follow-up and action plans
 – Leadership claims to be different than other units
• POCT not unique – similar nursing round results
The ED Environment

• Acute care – need for rapid response
• Level 1 trauma center
• High staff turnover and outside coverage
 – Lose administrative continuity
 – Frequent staff reeducation of basics
 – Less ownership than other hospital sites
ED Design Changes

• Two champions of POCT on unit helped motivate staff re: POCT challenges
• Tired of same issues reoccurring month after month
• Collected a team of TA operators
• Redesigned the self-inspection form
 – Delegated tasks
 – Assigned POCT responsibilities to all shifts
 – 4 team leads all responsible wkly compliance
Emergency Department
POCT Site Inspection Report

<table>
<thead>
<tr>
<th>Glucose</th>
<th>Review OK</th>
<th>Comments or Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC marked with Exp. Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The QC bottles are good until manufacturers outdate or for 90 days once opened. There should be one set opened and in the plastic box in the lab room.

<table>
<thead>
<tr>
<th>Urinalysis</th>
<th>Review OK</th>
<th>Comments or Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagents dated and not expired?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caps tight on the multistix bottles?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct QC on log?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct QC ranges noted on log?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC performed each day on all open bottles?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC performed when a new bottle is opened?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC failures repeated with remedial action plan?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily and weekly maintenance performed on Clinitek 50?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature chart complete with action taken when out of range?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient results logged?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR # and initials on tape?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient results charted with reference ranges?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Urine controls are to be kept in the refrigerator. They are good until manufacturers outdate. They are good at room temperature for 30 days. Each open bottle must have QC done. Multistix bottles are to be dated and initialed when opened. They are good until manufacturers outdate unless the cap is left too loose or off.
ED Outcomes

• Dramatic shift in compliance observed
• TA ownership of all staff
 – New self-inspection delineated responsibility
 – Defined ownership and job descriptions
 – Enhanced awareness of QC/exp dates/temp
• Staff turnover – planned for continuity
• Enhanced follow-up with action plans
• POCT ID errors down –
 – Staff weren’t waiting for pt registration prior to POCT
 – Using downtime 999 codes w/o follow-up in 24hr
 – TA team worked with the ED reg staff to get pts registered and banded faster upon admission
 – Key – a process change led to enhanced outcomes
Tip: Integrate POCT with Order Entry

• How do physicians know which test to order? POCT versus central lab?
• Educational pamphlet minimally effective
• More than a 10 fold difference in cost between a glucose by central lab, glucose meter, or BG POC
• Economic downturn forced us to reexamine clinical need for stat testing given cost differences
• Two initiatives to decrease inappropriate utilization
 – Change the name from i-Stat to POC cartridge
 – Prevent routine ordering of test
 – Pop-up window reminder
• Initiatives reduced POC cartridge usage by 50 - 60%
For all POC Cartridge Orders
Priority is defaulted to Stat – can not be changed
No free text fields and can not type into Order Comments field
POC Cartridge Lab Testing Changes

POC Cartridge testing is 10 times as expensive as routine and stat laboratory testing and 5 times as expensive as POC testing for glucose tests. BMC is the largest user of POC cartridges on the East Coast, adding significantly to our cost of care.

Please consider ordering a POC cartridge test only when there is an urgent need and avoid its use for routine and scheduled lab tests.

The indications for a POC Cartridge Test are:

- Emergent care of critically ill patient
- Severely anemic patients whom the Hgb is < 8 g/dl
- Patient with excessive blood draws (> 10 tubes drawn in last 24 hours)

‘Pop-Up’ text that appears automatically upon selecting a POC Cartridge order
Tip: Assist POCT Result Interpretation

- POCT can be a different technology, intermixing POC and Core lab results leads to confusion.
- Glucose meters, while universally used, have several limitations
 - Extremes of Hgb/Hct (<20 – 25% and >50 - 60%)
 - Maltose/xylose/galactose interference on some glucose dehydrogenase based methods
 - Affects patients receiving dialysis fluids containing Icodextrin, injection or infusion solutions (human immunoglobulin), xylose absorption test
 - Erroneously low results if patient severely dehydrated, hypotensive, in shock or hyperglycemic-hyperosmolar state (with or without ketosis) [limitation of all meters]
Glucose Level & Glucose, POC
Glucose Level & Glucose, POC

5/7/2006
18:00 EDT 21:00 EDT 00:00 EDT 03:00 EDT 06:00 EDT 09:00 EDT 12:00 EDT 15:00 EDT

Glucose Level

Glucose, POC
Tip: Separate POCT Results in EMR

• POCT is a different technology
• Results are not equivalent to other laboratory methods without considering unique performance characteristics
• Electronic medical records overlay results of the same name, so physicians can trend tests over time.
• POCT results cannot be freely interchangeable with other methodologies and electronic reporting must keep results separate.
• We’ve developed POCT flowsheets to automate reporting of POCT results.
 – POCT results in nursing notes separate from lab reported results
 – POCT results require selection of site location – linked to licensure
 – Prevents intermixing of lab and POCT results, and misinterpretation
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose Level</td>
<td>172 H</td>
<td>199 H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose, Istat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose, POC</td>
<td>143 H</td>
<td>184 H</td>
<td>207 H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta Hydroxybutyrate</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>BUN</td>
<td>15 H</td>
<td>15 H</td>
<td>15 H</td>
<td>15 H</td>
<td>15 H</td>
</tr>
<tr>
<td>Creatinine-Blood</td>
<td>1.5 H</td>
<td>1.4 H</td>
<td>1.4 H</td>
<td>1.4 H</td>
<td>1.4 H</td>
</tr>
<tr>
<td>Estimated GFR, Non African American</td>
<td>41</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Estimated GFR, African American</td>
<td>50 *</td>
<td>54 *</td>
<td>54 *</td>
<td>54 *</td>
<td>54 *</td>
</tr>
<tr>
<td>Calcium</td>
<td>6.3 L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium, Ionized pH Corrected</td>
<td>1.01 * C</td>
<td>1.02 * C</td>
<td>1.02 * C</td>
<td>1.02 * C</td>
<td>1.02 * C</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.9 L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POC Urinalysis

Color
- Colorless
- Straw/Light yellow (Normal)
- Yellow (Normal)
- Amber/Dark yellow (Normal)
- Green
- Pink
- Red
- Brown
- Orange

Appearance
- Clear (Normal)
- Hazy (Normal)
- Cloudy (Normal)

Glucose
- Negative (Normal)
- Trace (100 mg/dl)
- 1+ (250 mg/dl)
- 2+ (500 mg/dl)
- 3+ (> or = 1000 mg/dl)

Bilirubin
- Negative (Normal)
- 1+ small
- 2+ moderate
- 3+ large

Ketones
- Negative (Normal)
- Trace (5 mg/dl)
- 1+ (15 mg/dl)
- 2+ (40mg/dl)
- 3+ (80mg/dl)

Specific Gravity
- < or = 1.005
- 1.010
- 1.015
- 1.020
- 1.025
- 1.030

Blood
- Negative (Normal)
- Trace
- 1+ small
- 2+ moderate
- 3+ large

pH
- 5.0
- 5.5
- 6.0
- > or = 6.5
- 7.0
- 7.5

Protein
- Negative (Normal)
- Trace
- 1+ (30 mg/dl)
- 2+ (100 mg/dl)
- 3+ (300 mg/dl)

Urobilinogen
- 0.2 mg/dl
- 1 mg/dl
- 2 mg/dl
- 4 mg/dl
- > or = 8.0

Nitrite
- Negative (Normal)
- Positive

Leukocytes
- Negative (Normal)
- Trace
- 1+ small
- 2+ moderate
- 3+ large

Organization/CLIA #
Tip: Utilize Best Practice Guidelines

• POCT is an increasingly popular means of delivering laboratory testing.
• When used appropriately, POCT can improve patient outcome by providing a faster result and therapeutic intervention.
• However, when over-utilized or incorrectly performed, POCT presents a patient risk and potential for increased cost of healthcare.
• LMPGs exist that have systematically reviewed the existing evidence relating POCT to patient outcome, graded the literature, and made recommendations regarding the optimal utilization of POCT devices in patient care.
Welcome back, James Nichols.

SEARCH OUR SITE

AACC > Members > NACB - The AACC Academy > LMPG

NACB: Laboratory Medicine Practice Guidelines (LMPG)

Since 1994, NACB has developed consensus-based guidelines for the laboratory evaluation and monitoring of patients with specified disorders. After a series of public presentations and reviews designed to reach consensus among the experts, the guidelines are published online.

Several LMPGs have been translated into other languages, which include French, Italian, Japanese, Polish, and Spanish. NACB welcomes collaboration with colleagues in other countries. For copyright and translation information, please contact Betsy Garman.

NACB's guidelines are available online for free; print versions are available for purchase through AACC Press.

Published Guidelines

- Major Tumor Markers 2009 Online Purchase
- Emerging CV Risk Factors 2009 Online Purchase
- Expanded Newborn Screening 2009 Online Purchase
- Tumor Markers Quality Requirements 2009 Online Purchase
- Biomarkers of ACS 2007 Online Purchase
- Point-of-care Testing 2007 Online Purchase

Message from Past President of NACB

Click here for a transcript of Roland Valdes' video message.
Brief Summary

GUIDELINE TITLE

Management. Laboratory medicine practice guidelines: evidence-based practice for point-of-care testing.

BIBLIOGRAPHIC SOURCE(S)

GUIDELINE STATUS

This is the current release of the guideline.

RECOMMENDATIONS

EVIDENCE SUPPORTING THE RECOMMENDATIONS

IDENTIFYING INFORMATION AND AVAILABILITY

DISCLAIMER

Go to the Complete Summary

MAJOR RECOMMENDATIONS

Definitions of the levels of evidence (I—III) and grades of the recommendation (A, B, C, I) are presented at the end of the "Major Recommendations" field.

Note from the National Academy of Clinical Biochemistry (NACB) and the National Guideline...
The National Academy of Clinical Biochemistry

Presents

LABORATORY MEDICINE PRACTICE GUIDELINES

EVIDENCE-BASED PRACTICE FOR POINT-OF-CARE TESTING

VANDERBILT UNIVERSITY MEDICAL CENTER

AACCPress
Occult Blood Recommendations

• Does annual or biennial guaiac-based FOBT, in the average risk asymptomatic outpatient population over 50 years old, reduce mortality from colorectal cancer compared to no FOBT screening?

• Recommendation: We strongly recommend that clinicians routinely provide guaiac-based FOBT for asymptomatic individuals older than 50 years at least biennially to reduce mortality from colorectal cancer. Three large randomized control trials have illustrated a 15-33% reduction in mortality from annual or biennial FOBT. FOBT is easy, inexpensive and poses no risk to the patient.
 (Strength/consensus of recommendation A, Level of Evidence: I - randomized control trials and case-control studies)

• Should FOBT be performed in the central laboratory or at the point-of-care for asymptomatic patients who require screening for colorectal cancer?

• Recommendation: We cannot recommend for or against the use of point-of-care testing to screen for colorectal cancer in asymptomatic patients. Experts suggest that home collection of specimens with analysis either in the physician office or laboratory is recommended over traditional point-of-care testing for occult blood by digital rectal examination. In addition, the randomized control trials illustrating colorectal cancer mortality reduction utilized the central laboratory to perform FOBT. However, no trials have compared these methodologies and addressed the benefits of point-of-care testing, which include convenience and an increase in compliance.
 (Strength/consensus of recommendation I, Level of Evidence: III – retrospective trial, expert opinion)
Occult Blood Recommendations

• Can gastrooccult testing of gastric fluid from a nasogastric tube be used to detect gastrointestinal bleeding in high-risk intensive care unit patients receiving antacid prophylaxis?

• **Recommendation:** We cannot currently recommend for or against the use of gastrooccult to detect gastric bleeding in intensive care unit patients receiving antacid prophylaxis. Only one study to our knowledge has indirectly addressed this issue. No randomized controlled trials have been performed.

(Strength/consensus of recommendation: I, Level III – small study, clinical evidence)
Tip: Periodically Reassess Existing POCT
Case Study: Bleeding in ICU Patients

• One small study available
• Examined 41 patients and showed that 13/14 patients with positive gastrooccult tests had a source of upper GI bleeding as seen by upper endoscopy.
• However, patients with negative gastrooccult tests did not undergo upper endoscopy.
Gastrooccult Testing?

• Discontinued without incident
• Approached Chief of GI and Division of Healthcare Quality with clinical utility.
• Researched literature and based on LMPG developed recommendation and justification
• Draft letter to medical staff reviewed by select clinicians
• General announcement and test removal
Gastrooccult Discontinuation

• No peer-reviewed literature indicating improved outcomes based on Gastrooccult
• Use of test after NG tube placement leads to positive results solely due to trauma of tube insertion
• Overt bleeding is a medical concern and doesn’t require test to detect
• pH is medically useful, pH paper is a better alternative because it’s easier to QC, already available on units and lower cost
• Elimination would reduce hospital burden of training and POCT documentation on nursing staff and reduce risk of developer mixup with hemoccult.
Gastrooccult Cost Savings

- Reagent: (12,000 tests/year)
 - Cards $21,000
 - Developer $ 5,000

- Labor
 - Nursing (5 min/test, 45K= 125d) $22,000
 - Competency (1100 x 15 min) $ 6,000
 - Lab oversight (4hr x 8 units x 12 mo) $ 8,500

- Total Annual Savings Estimate $62,500

- Total billed previous year 12

- Cost estimate for pH replacement $ 250
Resource for Reducing Errors

- Clinical Chemistry book recently released!
- Focus on errors in the Chemistry Laboratory including POCT
- Discussion of real-world errors and what can be done to detect and prevent errors.
Summary

• POCT is an increasingly popular means of delivering laboratory testing closer to the site of patient care.
• A faster result isn’t necessarily a better result
• Quality concerns require laboratory involvement and supervision of testing process
• Integration of POCT into patient care pathways ensures a link of test to patient outcome.
• Periodically reassess the POCT that is being conducted to ensure it continues to meet patient needs