Reducing Pre-analytical Errors

Christopher R. McCudden, Ph.D., FACB, FCACB, DABCC

University of Ottawa
The Ottawa Hospital
Eastern Ontario Regional Laboratory Association
Ontario, Canada
Objectives

- List the three different phases of the testing process and identify which areas have the highest risk of error
- Describe strategies to minimize preanalytical error
- Explain methods to ensure safe practices for point of care testing
What is the most common POC error?

• A. Patient misidentification
• B. Poor sample collection technique
• C. Deviation from analytical procedure
• D. Improper device maintenance (e.g. QC, reagent storage)
• E. Improper/lack of recording results
• F. Safety (e.g. hand hygiene, device reuse)
• G. Other
Outline

• Introduction

• Pre-analytical Phase:
 – Patient
 – Sampling
 – Transportation, Storage, and Mixing

• Summary and Key Points
The Pre-analytical Phase

- Processes that occur before a specimen is analyzed
- Up to 75% of all testing errors occur in the preanalytical phase
- Preanalytical errors can cause harm to patient
Parts of the Pre-analytical Phase

Safety

Patient

- Patient stability
- Patient identification

Sampling

- Tube/syringe labeling
- Site preparation
- Sample collection

Transport

- Specimen delivery to laboratory/storage

Processing

- Specimen receipt
- Order/requisition processing
- Mixing
Pre-analytical Challenges

• Many people involved:
 – Physicians: writing orders, instructing patients/staff
 – Nurses/Phlebotomists/RTs: patient ID, specimen collection
 – Runners: transport
 – Lab staff: receipt and processing

• More challenging in a teaching hospital

• Pre-analytical variables/errors are often unknown
 – Testing personnel
 – Clinicians interpreting the results
Understanding Pre-analytical Issues

- Most steps
- Most people
- High urgency & stress
- Most variation in work environment, technique, and training

% of Time Spent

- Pre-analysis: 60%
- Analysis: 25%
- Post-analysis: 15%
The Pre-analytical Process: POC

Safety

- Patient
- Sampling
- Transport
- Processing

Patient stability
Patient identification
Tube/syringe labeling
Site preparation
Sample collection
Specimen delivery to laboratory/storage
Specimen receipt
Order/requisition processing
Mixing
POC-Specific
Pre-analytical Challenges

• Non-lab staff
 – Limited Training & Experience
 – Divided Focus
 – Patient complexity
THE PATIENT

Patient

Variation

Sampling

Transport

Processing
Starting on the Right Foot: Identify the Patient

• Incorrect/missing patient and sample IDs are frequent and critical pre-analytical errors

• Risk of patient harm
 – May harm two patients if results are switched
 – Over or under treatment/diagnosis/followup
Approximately how much does a single misidentification error cost?

- A. 0-5 dollars
- B. >5 to 20 dollars
- C. >20 to 50 dollars
- D. >50 to 100 dollars
- E. >100 dollars
Consequences of Patient Misidentification

• Financial Implication of mislabeling*:
 • $500/incident
 • 250/month
 • Annual cost = USD 1.5 million

• Failure to provide proper and immediate care to a patient

• Inappropriate care to a patient

*Excluding medicolegal or liability costs
Avoiding Identification Errors

- Positive Patient Identification x2
- Correlate Orders with Patient Name
- Identification on Sample Device at site of Collection
 - Patient ID label attached
 - Pre-barcoded arterial syringe
- Enter a patient ID into the analyzer before analysis
- Use barcode readers
- Ensure user competency
Test-Specific Advice: Patient Variables

• FIO2 and application of device
 – Mode of ventilation and Patient compliance with supplemental O2

• Duration of changes in vent settings
 – Approximately 5-10 minutes post change up to 20% in stable Patient (Cakar, 2001, Intensive Care Medicine)
 – Up to 30 minutes post change in Patient with Obstructive Lung Disease (Parsons, 2002)

• Patient's respiratory rate, temperature, position, activity

• Ease of (or difficulty with) blood sampling
POC Testing and Safety

• POC testing != no risk

 – Employee:
 • Needle stick injury
 • Blood exposure

 – Patient:
 • Nosocomial infection
 – Drug resistant pathogens, Hepatitis
POC Testing and Safety: Patients

• Reports of multiple deaths for acute hepatitis B infection caused by poor practices with self-monitoring blood glucose meters

• 8/87 assisted living facility residents affected; 6 deaths

• Sharing of lancets

• Lack of disinfection

Reducing the Risk of POCT-related Infections*

- Discard finger-stick devices after each patient
 - Use autodisabling devices

- Assign POC devices to a single patient whenever possible

- Clean and disinfect POCT devices after every use

- Use proper hand-hygiene

*Safe and helps meet accreditation standards

Clinical Laboratory News (39):1
FDA Patient Safety News. Preventing infections while monitoring glucose.
POC Testing and Safety: Staff

• Blood exposure and needlestick injuries are common

• All healthcare staff involved in patient care are affected
 – Medical technologists, Physicians, Respiratory Therapists, and Nurses

2Adapted from http://www.cdc.gov/niosh/stopsticks/sharpsinjuries.html
Exposure Causes and Consequences

• **Causes:**
 – Unavailability of safety devices
 – Lack of procedure for operator safety
 – Procedures for safety not known or followed

• **Consequences:**
 – Needle-stick injury
 – Anxiety
 – Infection
 – Medical treatment
Risk Reduction

• To avoid risks:
 – Use PPE
 – Use a safety device that limits contact with patient blood
 – Use a protection device for the safe removal of needles
 – Ensure procedure for operator safety is established and followed
Sampling

• Potential Issues:
 – Site selection
 – Site preparation
 – Collection
Sampling: Arterial Puncture

• Label the syringe with patient ID

• Choose Wisely
 – Note location and direction of flow for IV fluids relative to draw site
 – Confirm Arterial vs. Venous collection
 – **Adequate flushing of ports or lines**

• Expel any air bubbles immediately after sampling

• Mix the sample thoroughly immediately after sampling
Poll

Poll Question

If unrecognized, what are the potential consequences of this error?

A). Unnecessary blood transfusion
B). Excess potassium supplementation
C). Confusion & concern for misidentification
D). Lack of appropriate insulin therapy

<table>
<thead>
<tr>
<th>Type</th>
<th>Arterial</th>
<th>Type</th>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.923</td>
<td>pH</td>
<td>6.975</td>
</tr>
<tr>
<td>pCO2</td>
<td>12.4</td>
<td>pCO2</td>
<td>8.2</td>
</tr>
<tr>
<td>pO2</td>
<td>49.3</td>
<td>pO2</td>
<td>187</td>
</tr>
<tr>
<td>HCO3</td>
<td>4.5</td>
<td>HCO3</td>
<td><1.0</td>
</tr>
<tr>
<td>BE</td>
<td>-27.7</td>
<td>BE</td>
<td>-28.2</td>
</tr>
<tr>
<td>sO2</td>
<td>83.5</td>
<td>sO2</td>
<td>98.9</td>
</tr>
<tr>
<td>tHgb</td>
<td>7.0</td>
<td>tHgb</td>
<td>13.8</td>
</tr>
<tr>
<td>K</td>
<td>1.6</td>
<td>K</td>
<td>3.0</td>
</tr>
<tr>
<td>Na</td>
<td>143</td>
<td>Na</td>
<td>142</td>
</tr>
<tr>
<td>Glucose</td>
<td>145</td>
<td>Glucose</td>
<td>290</td>
</tr>
</tbody>
</table>

Contaminated Sample

- Type: Arterial
- pH: 6.923
- pCO2: 12.4
- pO2: 49.3
- HCO3: 4.5
- BE: -27.7
- sO2: 83.5

Accurate Sample

- Type: Arterial
- pH: 6.975
- pCO2: 8.2
- pO2: 187
- HCO3: <1.0
- BE: -28.2
- sO2: 98.9

- tHgb: 7.0
- K: 1.6
- Na: 143
- Glucose: 145
To avoid errors:

- Check the specific catheter package for the exact volume of dead space

- Rule of thumb: discard at least three times the dead space
 - (CLSI recommends 6x)

- Draw the blood gas sample with a dedicated blood gas syringe containing dry electrolyte-balanced heparin

- If in doubt, consider resampling
Air bubbles

- Any air bubbles in the sample must be expelled as soon as possible after the sample has been drawn — before mixing the sample with heparin

- Even small air bubbles may seriously affect the pO_2 value of the sample

- An air bubble whose relative volume is 0.5 to 1.0 % of the blood in the syringe is a potential source of a significant error
Air bubble Effects depend on:

- Size of bubble
- Number of bubbles
- Initial oxygen status of sample
- Longer time
- Lower temperature
- Increased agitation

Effect on pO_2

Surface area of air bubble
Effect of Air Bubbles

Sample was transferred between collection devices to inject low sample volume.
Hemolysis

- Hemolysis releases intracellular components
- Is not visible in a whole blood sample
 - All POC samples!

After 5% hemolysis

(≈ 0.8 g/dL free hemoglobin)
Hemolysis

• Hemolysis of the sample can lead to:
 – Biased results
 – Possible misdiagnosis
 – Possible erroneous patient treatment/lack of treatment

• To avoid errors:
 – Do not milk or massage the tissue during sampling
 – Use self-filling syringes
 – Use recommended procedures for mixing of samples
PROCESSING

- Patient Variation
- Sampling
- Transport
- Processing
Mixing and Clots

- Samples must be mixed after expelling air
- Before analyzing the sample, make a visual check of the blood
- Inspect for air bubbles
- Expel a few drops of blood from the syringe to inspect for clots
What Happens to the Instrument If a Clotted Sample is Analyzed?

POLL QUESTION

• A). No effect, ABG instruments have a hemolyzer

• B). Instrument will be unusable until clot is removed

• C). Electrolyte results will decrease

• D). Electrolyte results will increase
What Happens to the Instrument If a Clotted Sample is Analyzed?

Error!!
Summary

• We’re all in this together ➔ Help the patient!

• POC testing is not free from re-analytical errors

• POC Testing has unique challenges

• A bad sample is worse than no sample
Thank you and Questions?
Additional Resources

- www.acutecaretesting.org
- A discard volumes arterial blood gas sampling. Critical Care Medicine: June 2003 - Volume 31 - Issue 6 - pp 1654-1658
- http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6006a5.htm
List of Potential Preanalytical Errors

- Missing or wrong patient/sample identification
- Use of the wrong type or amount of anticoagulant
 - dilution due to the use of liquid heparin
 - insufficient amount of heparin
 - binding of electrolytes to heparin
- Inadequate stabilization of the respiratory condition of the patient
- Inadequate removal of flush solution in a-lines prior to blood collection
- Mixture of venous and arterial blood during puncturing
- Air bubbles in the sample
- Insufficient mixing with heparin
- Incorrect storage
- Hemolysis of red blood cells
- Not visually inspecting the sample for clots
- Inadequate mixing of sample before analysis
- Failure to identify the sample upon analysis