Reducing Pre-analytical Errors

Christopher R. McCudden, Ph.D., FACB, FCACB, DABCC
University of Ottawa
The Ottawa Hospital
Eastern Ontario Regional Laboratory Association
Ontario, Canada
Objectives

• List the three different phases of the testing process and identify which areas have the highest risk of error
• Describe strategies to minimize preanalytical error
• Explain methods to ensure safe practices for point of care testing
What is the most common POC error?

- A. Patient misidentification
- B. Poor sample collection technique
- C. Deviation from analytical procedure
- D. Improper device maintenance (e.g. QC, reagent storage)
- E. Improper/lack of recording results
- F. Safety (e.g. hand hygiene, device reuse)
- G. Other
Outline

• Introduction

• Pre-analytical Phase:
 – Patient
 – Sampling
 – Transportation, Storage, and Mixing

• Summary and Key Points
The Pre-analytical Phase

- Processes that occur before a specimen is analyzed
- Up to 75% of all testing errors occur in the preanalytical phase
- Preanalytical errors can cause harm to patient
Parts of the Pre-analytical Phase

- Safety
 - Patient
 - Sampling
 - Transport
 - Processing
 - Patient stability
 - Patient identification
 - Tube/syringe labeling
 - Site preparation
 - Sample collection
 - Specimen delivery to laboratory/storage
 - Specimen receipt
 - Order/requisition processing
 - Mixing
Pre-analytical Challenges

• Many people involved:
 – Physicians: writing orders, instructing patients/staff
 – Nurses/Phlebotomists/RTs: patient ID, specimen collection
 – Runners: transport
 – Lab staff: receipt and processing

• More challenging in a teaching hospital

• Pre-analytical variables/errors are often unknown
 – Testing personnel
 – Clinicians interpreting the results
Understanding Pre-analytical Issues

• Most steps
• Most people
• High urgency & stress
• Most variation in work environment, technique, and training

% of Time Spent
- Pre-analysis: 60%
- Analysis: 25%
- Post-analysis: 15%
The Pre-analytical Process: POC

- Patient
 - Patient stability
 - Patient identification

- Sampling
 - Tube/syringe labeling
 - Site preparation
 - Sample collection

- Transport
 - Specimen delivery to laboratory/storage

- Processing
 - Specimen receipt
 - Order/requisition processing
 - Mixing
POC-Specific Pre-analytical Challenges

• Non-lab staff
 – Limited Training & Experience
 – Divided Focus
 – Patient complexity
THE PATIENT

Patient Variation

Sampling

Transport

Processing
Starting on the Right Foot: Identify the Patient

• Incorrect/missing patient and sample IDs are frequent and critical pre-analytical errors

• Risk of patient harm
 – May harm two patients if results are switched
 – Over or under treatment/diagnosis/followup
Approximately how much does a single misidentification error cost?

• A. 0-5 dollars
• B. >5 to 20 dollars
• C. >20 to 50 dollars
• D. >50 to 100 dollars
• E. >100 dollars
Consequences of Patient Misidentification

• Financial Implication of mislabeling*:
 • $500/incident
 • 250/month
 • Annual cost = USD 1.5 million

• Failure to provide proper and immediate care to a patient

• Inappropriate care to a patient

*Excluding medicolegal or liability costs
Avoiding Identification Errors

- Positive Patient Identification x2
- Correlate Orders with Patient Name
- Identification on Sample Device at site of Collection
 - Patient ID label attached
 - Pre-barcoded arterial syringe
- Enter a patient ID into the analyzer before analysis
- Use barcode readers
- Ensure user competency
Test-Specific Advice: Patient Variables

• FIO2 and application of device
 – Mode of ventilation and Patient compliance with supplemental O2

• Duration of changes in vent settings
 – Approximately 5-10 minutes post change up to 20% in stable Patient
 (Cakar, 2001, Intensive Care Medicine)
 – Up to 30 minutes post change in Patient with Obstructive Lung Disease
 (Parsons, 2002)

• Patient's respiratory rate, temperature, position, activity

• Ease of (or difficulty with) blood sampling
SAFETY
POC Testing and Safety

• POC testing != no risk

 – Employee:
 • Needle stick injury
 • Blood exposure

 – Patient:
 • Nosocomial infection
 – Drug resistant pathogens, Hepatitis
POC Testing and Safety: Patients

- Reports of multiple deaths for acute hepatitis B infection caused by poor practices with self-monitoring blood glucose meters

- 8/87 assisted living facility residents affected; 6 deaths

- Sharing of lancets

- Lack of disinfection

Reducing the Risk of POCT-related Infections*

• Discard finger-stick devices after each patient
 – Use autodisabling devices

• Assign POC devices to a single patient whenever possible

• Clean and disinfect POCT devices after every use

• Use proper hand-hygiene

*Safe and helps meet accreditation standards
POC Testing and Safety: Staff

• Blood exposure and needlestick injuries are common
 – 23,908 injuries in 85 hospitals in 10 states (1995-2005)\(^1\)

• All healthcare staff involved in patient care are affected
 – Medical technologists, Physicians, Respiratory Therapists, and Nurses

\(^2\)Adapted from http://www.cdc.gov/niosh/stopsticks/sharpsinjuries.html
Exposure Causes and Consequences

• **Causes:**
 – Unavailability of safety devices
 – Lack of procedure for operator safety
 – Procedures for safety not known or followed

• **Consequences:**
 – Needle-stick injury
 – Anxiety
 – Infection
 – Medical treatment
Risk Reduction

• To avoid risks:
 – Use PPE
 – Use a safety device that limits contact with patient blood
 – Use a protection device for the safe removal of needles
 – Ensure procedure for operator safety is established and followed
SAMPLING

Patient Variation

Sampling

Transport

Processing
Sampling

• Potential Issues:
 – Site selection
 – Site preparation
 – Collection
Sampling: Arterial Puncture

- Label the syringe with patient ID
- Choose Wisely
 - Note location and direction of flow for IV fluids relative to draw site
 - Confirm Arterial vs. Venous collection
 - *Adequate flushing of ports or lines*
- Expel any air bubbles immediately after sampling
- Mix the sample thoroughly immediately after sampling
If unrecognized, what are the potential consequences of this error?

A). Unnecessary blood transfusion
B). Excess potassium supplementation
C). Confusion & concern for misidentification
D). Lack of appropriate insulin therapy

<table>
<thead>
<tr>
<th>Contaminated sample</th>
<th>Accurate sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Arterial</td>
<td>Type: Arterial</td>
</tr>
<tr>
<td>pH: 6.923</td>
<td>pH: 6.975</td>
</tr>
<tr>
<td>pCO2: 12.4</td>
<td>pCO2: 8.2</td>
</tr>
<tr>
<td>pO2: 49.3</td>
<td>pO2: 187</td>
</tr>
<tr>
<td>HCO3: 4.5</td>
<td>HCO3: <1.0</td>
</tr>
<tr>
<td>BE: -27.7</td>
<td>BE: -28.2</td>
</tr>
<tr>
<td>sO2: 83.5</td>
<td>sO2: 98.9</td>
</tr>
<tr>
<td>tHgb: 7.0</td>
<td>tHgb: 13.8</td>
</tr>
<tr>
<td>K: 1.6</td>
<td>K: 3.0</td>
</tr>
<tr>
<td>Na: 143</td>
<td>Na: 142</td>
</tr>
<tr>
<td>Glucose: 145</td>
<td>Glucose: 290</td>
</tr>
</tbody>
</table>
Blood Gas Sampling

To avoid errors:

• Check the specific catheter package for the exact volume of dead space

• Rule of thumb: discard at least three times the dead space
 – (CLSI recommends 6x)

• Draw the blood gas sample with a dedicated blood gas syringe containing dry electrolyte-balanced heparin

• If in doubt, consider resampling
Air bubbles

- Any air bubbles in the sample must be expelled as soon as possible after the sample has been drawn—before mixing the sample with heparin.

- Even small air bubbles may seriously affect the pO_2 value of the sample.

- An air bubble whose relative volume is 0.5 to 1.0% of the blood in the syringe is a potential source of a significant error.
Air bubble Effects depend on:

- Size of bubble
- Number of bubbles
- Initial oxygen status of sample
- Longer time
- Lower temperature
- Increased agitation
Effect of Air Bubbles

Air Contaminated sample

<table>
<thead>
<tr>
<th>Type:</th>
<th>Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH:</td>
<td>7.50</td>
</tr>
<tr>
<td>pCO2:</td>
<td>37.1</td>
</tr>
<tr>
<td>pO2:</td>
<td>163</td>
</tr>
<tr>
<td>HCO3:</td>
<td>28.9</td>
</tr>
<tr>
<td>BE:</td>
<td>5.6</td>
</tr>
<tr>
<td>sO2:</td>
<td>99.0</td>
</tr>
</tbody>
</table>

Accurate sample

<table>
<thead>
<tr>
<th>Type:</th>
<th>Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH:</td>
<td>7.37</td>
</tr>
<tr>
<td>pCO2:</td>
<td>56.7</td>
</tr>
<tr>
<td>pO2:</td>
<td>43.8</td>
</tr>
<tr>
<td>HCO3:</td>
<td>31.9</td>
</tr>
<tr>
<td>BE:</td>
<td>6.7</td>
</tr>
<tr>
<td>sO2:</td>
<td>81.1</td>
</tr>
</tbody>
</table>

Sample was transferred between collection devices to inject low sample volume.
Hemolysis

• Hemolysis releases intracellular components
• Is not visible in a whole blood sample
 – All POC samples!

After 5% hemolysis
(≈ 0.8 g/dL free hemoglobin)
Hemolysis

• Hemolysis of the sample can lead to:
 – Biased results
 – Possible misdiagnosis
 – Possible erroneous patient treatment/lack of treatment

• To avoid errors:
 – Do not milk or massage the tissue during sampling
 – Use self-filling syringes
 – Use recommended procedures for mixing of samples
PROCESSING
Mixing and Clots

- Samples must be mixed *after* expelling air
- Before analyzing the sample, make a visual check of the blood
- Inspect for air bubbles
- Expel a few drops of blood from the syringe to inspect for clots
What Happens to the Instrument If a Clotted Sample is Analyzed?

- A). No effect, ABG instruments have a hemolyzer
- B). Instrument will be unusable until clot is removed
- C). Electrolyte results will decrease
- D). Electrolyte results will increase
What Happens to the Instrument If a Clotted Sample is Analyzed?

Error!!
Summary

• We’re all in this together → Help the patient!

• POC testing is not free from re-analytical errors

• POC Testing has unique challenges

• A bad sample is worse than no sample
Thank you and Questions?
Additional Resources

• www.acutecaretesting.org

• A discard volumes arterial blood gas sampling. Critical Care Medicine: June 2003 - Volume 31 - Issue 6 - pp 1654-1658

• http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6006a5.htm
List of Potential Preanalytical Errors

- Missing or wrong patient/sample identification
- Use of the wrong type or amount of anticoagulant
 - dilution due to the use of liquid heparin
 - insufficient amount of heparin
 - binding of electrolytes to heparin
- Inadequate stabilization of the respiratory condition of the patient
- Inadequate removal of flush solution in a-lines prior to blood collection
- Mixture of venous and arterial blood during puncturing
- Air bubbles in the sample
- Insufficient mixing with heparin
- Incorrect storage
- Hemolysis of red blood cells
- Not visually inspecting the sample for clots
- Inadequate mixing of sample before analysis
- Failure to identify the sample upon analysis