

Objectives

- Discuss quality management requirements in the CAP Laboratory Accreditation Program
- Suggest best practices in quality management to facilitate compliance with these requirements
- Recognize how a robust QMS can help a laboratory achieve benefits without compromising test results
- Explore how occurrence management and root cause analysis can improve operations

CAP Laboratory Accreditation ProgramQuality Requirements

Where Do I Find Quality Management Requirements in CLIA'88?

Subpart K--Quality System for Nonwaived Testing

Sec. 493.1200 Introduction

The laboratory must have:

- a) Written policies and procedures that implement and monitor a quality system,
- b)Quality assessment ensuring continuous improvement through ongoing monitoring that identifies, evaluates and resolves problems with
- c)Components of the quality system that are appropriate for the testing the laboratory performs, services it offers, and clients it serves

Current CLIA Requirements

493.1230 Condition: General laboratory systems

- Confidentiality
- Specimen integrity
- Complaint investigations
- Communications
- Personnel competency
- Proficiency testing evaluation
- General laboratory systems quality assessment

493.1240 Condition: Preanalytic systems

- Test request
- Specimen handling and referral
- Preanalytic systems quality assessment

Current CLIA Requirements

493.1250 Condition: Analytic Systems

- Procedure manual
- Equipment, materials and supplies
- Performance specifications, maintenance and function checks
- Calibration and calibration verification
- Control procedures
- Comparison of test results
- Corrective actions
- Analytic systems quality assessment

493.1290 Condition: Postanalytic systems

- Test report
- Postanalytic systems quality assessment

Quality Management Plan (GEN.13806 Documented QM Program)

- The laboratory has a documented quality management (QM) program
 - Describe program including objectives and essential elements
 - Ensure quality in pre-analytic, analytic and postanalytic phases
 - Identify problems and opportunities of improvement

Quality Management Plan (GEN.16902 QM Implementation)

- For laboratories that have been CAP accredited for more than 12 months, the QM plan is implemented as designed and is reviewed annually for effectiveness.
 - This is often the weakest part of the QM plan implementation.
 - Although a formal report is not required, demonstration of revisions based on the review and <u>why these revisions were made</u> would be necessary to show compliance
 - This can be integrated into a revised annual QM plan

Quality Management Plan (GEN.20100 QM Extent of Coverage)

- The QM program covers all areas of the laboratory and all beneficiaries of service
 - QM program covers more than the monitors of performance
 - The QM plan itself can be used to outline the laboratory's approach to the CLIA Quality Systems requirements
 - A single QM plan can be used for the entire laboratory, but typically individual sections have different aspects of service and may be better served with section-specific programs

Quality Management Plan (GEN.20208 QM Patient Care Services)

- The QM system includes a program to identify and evaluate errors, incidents and other problems that may interfere with patient care services
 - Organized program for documentation
 - Internal and external (outside) sources such as complaints
 - Clinical, rather than business/management issues
 - Root cause analysis of any unexpected event involving death or serious physical or psychological injury, or risk thereof (including "near misses" and sentinel events)
 - Demonstrates appropriate risk-reduction activities based on such root cause analyses

Quality Management Plan (GEN.20316 QM Indicators of Quality)

- The QM program includes monitoring key indicators of quality in the pre-analytic, analytic, and post-analytic phases
 - Critical to patient outcome and/or affect many patients
 - Compare performance against available benchmarks
 - Number of indicators consistent with the scope of care

Quality Management Plan (GEN.20316 QM Indicators of Quality)

- For a small laboratory, a single monitor (such as turnaround time or clinical correlation) may be sufficient and appropriate
- Although external benchmarks are desirable, historic performance may be used to determine targets of acceptable performance
- Consider how you set your thresholds
 - Meaningful
 - Achievable
- The annual review should not only assess performance, but look for ways to improve performance
 - Noting "continue to monitor" or "stable and adequate" is not adequate
- Monitors that are stable and acceptable should be evaluated for replacement

Quality Management - Document Control (GEN.20375)

- The laboratory has a document control system to manage policies, procedures, and forms
 - All policies, procedures and forms (including quality management documents) for all processes and activities
 - Ensure that only current policies, procedures, and forms are in use
 - Any instruction found in use (or usable) in the laboratory must, at a minimum, be current and, preferably, under document control
 - This includes personal notes

Quality Management - Procedures (COM.10000 Procedure Manual)

- A complete procedure manual is available at the workbench or in the work area
- There is documentation of review of all technical policies and procedures by the current laboratory director or designee at least every two years
- The laboratory has a defined process indicating that all personnel are knowledgeable about the contents of the policies and procedures (including changes) relevant to the scope of their testing activities

Process-Oriented Quality Management: Best Practices and Benefits

Looking at QM from a PROCESS perspective...

Building quality into our daily work means:

The right test on

The right patient at

The right time for

The right cost delivered to

The right clinician

CLSI Quality System Essentials

- 1. Organization
- 2. Customer focus
- 3. Facilities and safety
- 4. Personnel
- Purchasing and inventory
- 6. Equipment
- 7. Process management

- 8. Documents and records
- 9. Information management
- 10. Nonconforming event management
- 11. Assessments
- 12. Continual improvement

Developing a Quality Management driven Laboratory

- Focus on technical procedures
- Intense PT monitoring
- Rigor in competency assessment of technical staff
- Problem investigation or occurrence management:
 - ✓ Conduct in-depth root cause analysis
 - √ Focus on process, systems integration, outcomes
 - ✓ Evolve beyond containment into prevention
 - ✓ Develop effective corrective actions

Process Focus

How can a process-oriented QMS help address common deficiencies?

Match Them Up!

- Competency Assessment
- Activity Menu
- Document Control
- PT Evaluation
- Procedure Manual
- Attestation Page
- Procedure Review
- Reagent Labeling
- Reagent Storage
- Personnel Records

- QSE #4 Personnel
- QSE #1 Organization
- QSE #8 Documents/Records
- QSE #7 Process Management
- QSE #8 Documents/Records
- QSE #7 Process Management
- QSE #8 Documents/Records
- QSE #5 Purchasing/Inventory
- QSE #5 Purchasing/Inventory
- QSE #8 Documents/Records

In order to correct process problems, you have to identify them

- Use QMS elements to identify problems before they get big
 - Internal audits
 - Management review
- Go beyond "putting out fires"

Internal Audit – Best Practices

- Differentiate internal audit from self-inspection
 - Self-inspection
 - Do we satisfy the checklist requirement?
 - The answer is always "yes or no"
 - Evaluate based on number of deficiencies
 - Internal audit
 - Are we adhering to our own quality system?
 - Is this process effective?
 - Is the system as a whole effective?
 - Look for opportunities to improve

Internal Audit – Best Practices

Conduct your own tracer-like audits

Internal Audit - Best Practices

Create a structure to insure follow-up on audit findings

- Responsibility
- Due Date
- Completion

Results of Internal Audit

Continual Improvement

Make Better

Occurrence Management

Make Good

Occurrence Management – Best Practices

 Do root cause analysis at the appropriate level for all occurrences, not just sentinel events

	Number of Errors
Issue	232
Pre-Analytical Specimen labeling errors / Recollection Quantity Not Sufficient / Recollection Requisition incorrect Requisition incorrect Patient injured during phlebotomy Patient unhappy with phlebotomy customer Profice Incorrect tube used Specimen ruined Specimen lost in transport / recollection Tissue sample incorrectly cut/ modification Specimen in lab Specimen delayed in transport Data entry error or other LIS problem	149 33 158 31 66 102 241 of 141 50 48
Post-Analytical Post-Analytical Post-Analytical Post-Analytical	101 199 100
Results not reported Results not reporting results Delay in reporting results Reporting to wrong person Incorrect results because of post-analy data entry errors	tic 27

Occurrence Management – Best Practices

Use the right root cause analysis tool for the situation

Process Mapping

Five Why's

Fishbone Diagram

Occurrence Management – Best Practices

Check effectiveness of corrective actions

What is the Intent of Quality Management?

The Intent Not the Intent Create a system as failure Be a tool to meet resistant as possible accreditation requirements Help identify opportunities for Be a "band-aid" fix for individual mistakes improvement **Involve and empower staff** Instill confidence in staff that the system will catch mistakes before they become a problem Reduce errors by doing things right the first time

The Value in Process-Oriented Quality Management: A Client's Perspective

Value of Meaningful Quality Management

Inspection Readiness

"the lab is the one department I don't worry about"

- Reduce number of CAP inspection deficiencies
- Increase market share in competitive markets
- Maximize gains from LEAN processes
- Extend laboratory quality initiatives outside normal laboratory boundaries
- Engage staff in the quality process
- Raise the bar on service quality for all patients and customers

Ways to reduce costs

- Process control
- Solve problems at root
- Prevention
- Quality focus

- Staff reductions
 - Percentage cuts in budget across all departments

Options for Quality Education and Accreditation Preparation

Quality Management Education Options

CAP Education

- Laboratory Medical Director
 Advanced Practical Pathology
 Program (LMD AP³⁾
- Quality ManagementEducation Resources (QM*Ed*),eg:
 - Root Cause Analysis
 - Internal Auditing
 - Quality Manual Development
 - Management Review

Quality Management Education Options

CLSI Guidelines

- **GP2-A5**
 - Laboratory Documents:Development and Control
- QMS20-R
 - Understanding the Cost of Quality in the Laboratory
- QMS01-A4
 - Quality Management
 System: A Model for
 Laboratory Services

Quality Management Education Options

- HCPro, Inc.,
 Kenneth Rohde
 - Occurrence
 Reporting: Building a
 Robust Problem
 Identification and
 Resolution Process
 - Effective ProcessManagement:Improving YourHealthcare Delivery

Two things...

Do your people know what they are doing?

Does your process produce quality results?

Both answers lie within your Quality Management System!!!

Thank You!!!

