Patient Safety: A Quality System Approach To POCT QC/QA

Ellis Jacobs, Ph.D., DABCC

New York University School of Medicine
Coler-Goldwater Specialty Hospital & Nursing Facility
New York, New York
Point-of-Care Testing Characteristics

A broad based process.
Unrestricted to location, personnel or test menu.

A collective, multi-disciplinary effort.
Simple to use technology
Potentially low volume testing
POCT versus Central Lab Testing

<table>
<thead>
<tr>
<th></th>
<th>Central Lab</th>
<th>POCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing personnel</td>
<td>Pathologists, PhDs, Med. Lab Technologists</td>
<td>Nurses, other care givers</td>
</tr>
<tr>
<td>Primary duties</td>
<td>Laboratory testing</td>
<td>Patient care</td>
</tr>
<tr>
<td>Knows laboratory testing</td>
<td>Extensive</td>
<td>Minimal</td>
</tr>
<tr>
<td>Understands instrument’s quality checks</td>
<td>Extensive</td>
<td>Minimal</td>
</tr>
<tr>
<td>Can interpret QC data</td>
<td>Yes</td>
<td>Probably not</td>
</tr>
<tr>
<td>Skills to resolve problems, troubleshooting</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Recognizes quality testing</td>
<td>Yes</td>
<td>Not necessarily</td>
</tr>
</tbody>
</table>
Potential Analytes for POCT

<table>
<thead>
<tr>
<th>Analytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirubin</td>
</tr>
<tr>
<td>Blood Gases</td>
</tr>
<tr>
<td>BUN</td>
</tr>
<tr>
<td>Cardiac Markers</td>
</tr>
<tr>
<td>CBC</td>
</tr>
<tr>
<td>Cholesterol/Triglycerols</td>
</tr>
<tr>
<td>Drugs</td>
</tr>
<tr>
<td>Fecal Occult Blood</td>
</tr>
<tr>
<td>Gastric Occult Blood</td>
</tr>
<tr>
<td>Glucose</td>
</tr>
<tr>
<td>Gram Stains</td>
</tr>
<tr>
<td>Hgb/Hct</td>
</tr>
<tr>
<td>Hgb A1C</td>
</tr>
<tr>
<td>Infectious Diseases</td>
</tr>
<tr>
<td>Lactate</td>
</tr>
<tr>
<td>Na, K, Ca++, Cl, Mg++</td>
</tr>
<tr>
<td>O₂ Sat</td>
</tr>
<tr>
<td>Platelet Function</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
<tr>
<td>PT/PTT/ACT</td>
</tr>
<tr>
<td>Urinary</td>
</tr>
<tr>
<td>microalbumin/creatinine</td>
</tr>
<tr>
<td>Urinalysis/Specific Gravity</td>
</tr>
</tbody>
</table>
Point-of-Care Tests (POCT)

- NOT considered laboratory testing
 - Breath alcohol
 - Continuous glucose monitors
 - Pulse oximeters
 - Transcutaneous bilirubinometers
 - Ex vivo ABG
 - Biosensor Technologies (monitors)
2001

Predicted Growth in POCT

- 12-16% annual growth
- Currently 1 in 4 test done by POC
- In 10 years ~40% by POC
- Currently $450 million industry
- In 2025, $950 million industry
Actual Growth in POCT

- 2008 Worldwide IVD Market - $42.1 Billion (46B in 2010)
- 2008 Worldwide POCT Market - $13.1 Billion (31%)
- 2010 Worldwide Professional POCT Market - $4 Billion
- ~10-12% annual growth
POC Testing Environments

- All testing performed at the patient’s side
Trends in Healthcare Provision

- Laboratory
- POCT
- Referral/Specialist Hospital
- Local Hospital
- Community Treatment Centre
- Primary Care Centre
- Home

Trend in care?
Moderators of POCT Growth

- Quality Assurance
- Quality Control - Matrix/Electronic
- Regulatory Requirements
- Record Keeping/Data Management
- Finances
POC Testing Knowledge Flow

Health Care Provider Determines Need for Data

Sample Obtained

Sample Processed At POC

Sample Received & Processed in Lab

Data entry into LIS

Sample Transported To Satellite Lab
Due to the rapid availability of results with POCT, data can be seen and acted upon prior to any QC checks or other external mechanism of assuring test results can be applied to these systems.
QA Issues With POC Testing

- Who performs testing and their training
- Pre-analytical variables and the ability to recognize them
- Reagent Testing
- Instrument verification
- Maintenance requirements
- Result reporting & charting
Quality System Hierarchy

- TQM
- Quality Management
- Quality Systems
- Quality Assurance
- Quality Control
POCT as a TQM Project

- Multidisciplinary team approach
- Looking at entire system, rather than individual performance
- On-going evaluation & refinement (CQI)
- Cost savings
- Improvement in delivery of critical laboratory services
Quality Management System Model

Laboratory’s Path of Workflow

Preanalytical → Analytical → Postanalytical

QSEs encompass the entire path
What is a Quality System?

The quality management system approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided).
Quality Service Essentials (QSEs)

- Facilities & Safety
- Customer Service
- Process Control
- Assessments External & Internal
- Personnel
- Occurrence Management
- Documents & Records
- Equipment
- Information Management
- Process Improvement
- Organization
- Purchasing & Inventory
- Organization
Quality of Health Care in U.S.

- Institute of Medicine
 - Medical errors cause 44,000 to 98,000 deaths each year
 » Equivalent to 200 deaths each day in airline crashes
 » Fifth leading cause of death in U.S.
 - Ahead of diabetes, breast cancer, HIV
 » Lab testing certainly contributes to deaths
 - Lab is looking for built-in safeguards to prevent errors

To Err is Human: Building a Safer Health System.
Washington, DC, National Academy Press; 2000
Sources of Testing Error

<table>
<thead>
<tr>
<th></th>
<th>1997</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preanalytical</td>
<td>68%</td>
<td>62%</td>
</tr>
<tr>
<td>Analytical</td>
<td>13%</td>
<td>15%</td>
</tr>
<tr>
<td>Postanalytical</td>
<td>19%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Laboratory Testing
Potential Sources of Errors

- Transmit result
- Record result
- Prepare request form
- Phlebotomy
- Patient
- Doctor
- Prepare sample
- Transport sample
- Register sample
- Analyse sample
- Quality control
- Validate result
- Report result

Potential Sources of Errors:

- Preparation of samples
- Preparation of request forms
- Phlebotomy
- Sample transport
- Sample registration
- Laboratory testing
- Quality control
- Analysis
- Result validation
- Result reporting
Potential Impact of POCT on Laboratory Errors

- **Pre-Analytical**
 - Patient Identification
 - Specimen Identification
 - Improper result validation (QC)

- **Post-Analytical**
 - Routing
 - Excessive turn-around time

- **Analytical**
 - Method Calibration
 - Interferences
 - Results out of measurement range
 - Quality Assessment (EQA/PT)
POCT & Patient Safety: Quality Testing Criteria

- Correct test ordered
- Correct patient
- Correct time for collection
- Correct specimen and processing
- Correct (accurate) test result
- Correct patient record
- Correct clinical interpretation of POCT result(s)
- Correct and timely clinical response
Best Practices for Glucose POCT

- Positive Patient ID - two identifiers
- Operator Certification
- Regular Calibration & QC
- Use Fresh Reagents
- Prevent Reagent Contamination
- Prevent Substance Interference
- Prevent Blood Sampling Errors
Evolution of POCT

Manual

Automation
A process or system operating automatically

Autonomation
Intelligent automation – detects single defective operation and automatically stops

Managing Sources of POCT Errors

- Designed out of the product
- Tested for
- Warned about
Evolution of Glucose POCT Technology

Manual Testing
- Incorrect sample amount
- Incorrect reagent amount
- Incorrect mixing
- Wrong position of testing device
- Wrong wait time
- Color blindness
Evolution of Glucose POCT Technology

Manual Methods

1st/2nd Generation Instruments
- Wipe/Wipeless technology
- Operator ID / Patient ID
- Reduced operator intervention
- Operator prompts
- Check on reagent viability
- QC lock-outs
- Rudimentary Data Management
Evolution of Glucose POCT Technology

- **Current Technology**
 - Electrochemical Technology
 - Ability to use universal specimen types
 - Extended linearity
 - Minimally Invasive Technology
 - (<3 uL Sample Size)
 - Consolidated Testing Platforms
 - Real Time Data Management and Connectivity

- **1st/2nd Generation Instruments**
- **Manual Tests**
Precision PcX

- **Reduces Interference Risk**
 - Glucose-specific strip technology
 - Minimizes interference from many non-glucose substances in the blood.
 - Patient safe for patients undergoing peritoneal dialysis using Extraneal™ (icodextrin).
 - Individually foil wrapped and bar-coded strips - reduces risk of contamination and helps assure fresh reagents for each test.

- **Reduces Risk of Sampling Errors**
 - Test begins when adequate sample is detected, reducing risk of short-sampling and over-sampling errors.
safePICO Blood Gas Syringe

- Pre-barcode arterial syringe for positive patient identification
- Establishes and maintains sample ID throughout testing process
Unit use and POCT devices

- It is often suggested that QC has no role in a unit use device because...
 - QC of a single unit (good or bad result) does not inform about other units [same argument would apply to non POCT analyzers in main lab that use discrete (unit use) reagent packs]
 - IMS fulfills QC role in unit use devices

- Unit use and continuous flow systems are not that different
Characteristics of Unit-Use Test

- The container where the test is performed is always discarded after each test.

- Reagents, calibrators, and wash solutions are typically segregated as one test. There is no interaction of reagents, calibrators, and wash solutions from test to test.
Nature of QC Procedures

- Use of electronic checks, including any instrument software features that serve as error detection or prevention mechanisms
- Use and number of surrogate samples, where appropriate, to be included as part of the QC procedure
- Testing of controls that are engineered into the test system
Abaxis Piccolo
Triage – Cardiac Markers

SAMPLE PORT Sample enters here.

REACTION CHAMBER A small fraction of the plasma sample mixes with the dried reagents.

INTERNAL CONTROLS Independent positive high and low control zones and a non-specific binding control confirm that the test has been completed correctly.

BLOOD FILTER Cells are separated from plasma, eliminating the need for centrifugation.

TIMEGATE A hydrophobic surface acts as a time barrier and ensures an appropriate reaction time.

ASSAY ZONES CK-MB, Troponin I and Myoglobin and the fluorescent-tagged antibodies are captured on separate zones of the device.

WASTE RESERVOIR The majority of the sample acts as a wash and collects in the perimeter of the device.
Surrogate QC doesn’t detect all errors

- Random patient interferences
- Random biases
- Long-term bias
- Imprecision

Assay a patient sample

Determine out of control cause, rerun samples

In control?
- Yes: Patient results reported
- No: Time to assay control?
 - Yes: Potential undetected errors
 - No: Potential blocked detected errors
Non-Surrogate Sample QC

Includes all forms of quality control other than the measurement of a surrogate sample, usually integrated into the device

- electronic QC (which simulates signals electronically), ex. i-STAT
- automated procedural controls (which ensure that certain steps of the procedure occur appropriately), ex. Immunochromatography test kits
- automated internal quality controls (which may, for example, ensure the quality of a raw signal), ex.
- diagnostic pattern recognition systems, ex. GEM iQM
Immunochromatography – Urine Dipstick
Gem Premier 4000

- Continuously monitors all critical components of blood gas testing in real time to assure accurate results
- Automatically assures that each test meets demanding quality specifications
- Immediately detects, corrects and documents errors
- Eliminates labor and material costs associated with traditional QC
- Assures that optimal quality control protocols are followed at all times, regardless of operator training
Internal monitoring systems (IMS)

- IMS are a collection of hardware and software that detect errors and prevent the effect of the error from occurring
 - Example: Noise in the signal of a patient sample is detected, the result is flagged and not reported

- IMS are not new – although always improved, they have been in systems for over 30 years
Internal monitoring systems don’t detect all errors, because:

- Complexity of instrument systems prevents perfect failure mode models
- There is management pressure to release new products quickly
- There is insufficient knowledge to “design things right the first time”
Non-Surrogate QC and QC

Surrogate and Non-Surrogate QC

- are not completely redundant
- do not detect all errors
Critical Factors in QC Decisions
Critical Factors in QC Decisions

- QC must be able to detect mistakes to enable immediate correction
Critical Factors in QC Decisions

- QC must be able to detect mistakes to enable immediate correction
- Risks and costs must be weighed
Critical Factors in QC Decisions

- QC must be able to detect mistakes to enable immediate correction
- Risks and costs must be weighed
- QC is only one part of the quality management system
Critical Factors in QC Decisions

- QC must be able to detect mistakes to enable immediate correction
- Risks and costs must be weighed
- QC is only one part of the quality management system
- Not all laboratories have the same competencies and organization
Critical Factors in QC Decisions

- QC must be able to detect mistakes to enable immediate correction
- Risks and costs must be weighed
- QC is only one part of the quality management system
- Not all laboratories have the same competencies and organization
- Science and common sense must converge
As automation reduces errors in the box, further reductions must occur outside the box.
Thinking Outside the POCT Box

Pre-pre: Physician must consider

» What POCT is available?
» What POCT will best serve the patient?
» Will an immediate answer improve the patient’s outcome?

◆ Post-post: Is the Physician?

» Receptive to using an immediate POCT result
» Able to interpret result in the patient’s context
» Amenable to initiating an immediate response
The Problem with Pedestals

Congratulations! Please stand still so everyone can get a clean shot at knocking you down.
QUESTIONS