## Statistics 101 for POCT

What do the numbers mean?

Marcia L. Zucker, Ph.D., FAACC ZIVD LLC

## Objectives

- Interpret statistical analyses as reported by commercial programs
- Identify the statistical analyses relevant to the question being asked
- Critically evaluate data presented in package inserts for mis-used statistics

#### Statistics

- Definition of Statistics: The science of producing unreliable facts from reliable figures.
  - Evan Esar
- Be able to analyze statistics, which can be used to support or undercut almost any argument.
  - Marilyn vos Savant
- Statistic: a function of a set of observations from a random variable.
  - CLSI Harmonized Database

#### Method Validation

- A new POCT is to be implemented
  - > Multiple replicates of controls run
  - Run side by side patient samples with current method
  - > Data is:
    - Entered into EP Evaluator OR
    - Entered into Excel spreadsheet and analyzed using AnalysisToolPak or Analyse-It OR
    - Sent to manufacturer
  - Report returned with lots of statistics
    - Report may indicate pass/ fail to unknown specifications
    - Manufacturer rep explains it is all good
- How do I know it is OK?

#### Resources

- www.gimacros.com
- YouTube videos on performing analyses in Excel
- CLSI EP documents
  - The lab may have copies
- https://www.wikihow.com/Calculate-Precision

### Some Basics

- Quantitative Methods
  - > Statistics we use assume a normal distribution



#### Precision

- Measure of the variability of the system
  - > How close are multiple replicates?
- Higher number of replicates allows better estimate of precision
- Outliers affect small numbers much more significantly
- Calculations assume a Normal Distribution
  - Frequently untrue assumption, but used anyway.

# Precision



## Precision – N affects result







#### Precision Statistics

- Mean central tendency of the data
  - Peak of the bell curve (Average used in practice)
- Median
  - > Value where 50% of samples are lower & 50% higher
- Standard deviation (SD) measure of variability
  - Width of the bell curve
  - Relates to difference between individual results and the mean
- Standard error (SE) measure of SD of the mean
  - Calculated from variance (SD<sup>2</sup>) & N
- 95% Confidence interval
  - Estimate of "truth" from data collected
  - 95% probability that the "true" value is within the interval defined

## Statistics Calculated

| Statistic                      | N=10        | N=20        | N=100       |
|--------------------------------|-------------|-------------|-------------|
| Mean                           | 3.90        | 4.17        | 4.22        |
| 95% CI mean                    | 3.65 – 4.14 | 4.00 – 4.35 | 4.14 – 4.27 |
| SE                             | 0.11        | 0.08        | 0.02        |
| SD                             | 0.34        | 0.38        | 0.24        |
| $CV = (\frac{Mean}{SD}) * 100$ | 8.7%        | 9.1%        | 5.7%        |
| Median                         | 3.99        | 4.21        | 4.25        |
| 95% CI median                  | 3.45 – 4.20 | 4.01 – 4.44 | 4.19 – 4.29 |

# Outlier Removal





# Outliers

| Statistic                      | N=10        | N=8         | N=100       | N=98        |
|--------------------------------|-------------|-------------|-------------|-------------|
| Mean                           | 3.90        | 4.04        | 4.22        | 4.24        |
| 95% CI mean                    | 3.65 – 4.14 | 3.92 – 4.16 | 4.14 – 4.27 | 4.20 – 4.28 |
| SE                             | 0.11        | 0.05        | 0.02        | 0.02        |
| SD                             | 0.34        | 0.14        | 0.24        | 0.20        |
| $CV = (\frac{Mean}{SD}) * 100$ | 8.7%        | 3.5%        | 5.7%        | 4.8%        |
| Median                         | 3.99        | 4.05        | 4.25        | 4.25        |
| 95% CI median                  | 3.45 – 4.20 | 3.86 – 4.23 | 4.19 – 4.29 | 4.20 – 4.30 |

#### Precision - Caveats

- Statistics often look better at higher mean values
  - If mean is 0.1 an SD of 0.05 is 50% CV
  - > If mean is 100 an SD of 5.0 is 5% CV
- Evaluate values reported in inserts
  - Should be near clinical decision points
  - Required for newer products
  - For older products expect to see more variability in end-user results

## Accuracy

- Comparison to "truth"
  - Truth usually defined as current system
  - Truth a myth for many analytes
    - Notably coagulation, troponin I, other nonstandardized analytes
- How close does POCT come to lab result
  - Correlation using patient samples

# Accuracy



# Correlation Graph

#### Data points

- Each split sample generates one point
- > Horizontal (X) axis is Lab (current system)
- Vertical (Y) axis is point of care (new) device
- Regression line
  - Mathematical prediction of relationship between two devices

# Results - Correlation Graph



Regression line

Data points

Regression equation

# Correlation Graph

- Regression equation
  - > 3 parts: Y = mX + b (y = 1.03x + 3.6)
    - Y = POC (new) result; X = lab (current) result
    - m = slope perfect correlation m = 1.0
    - b = intercept perfect correlation b = 0.0
  - > r value correlation coefficient
    - NOT r<sup>2</sup>
    - Describes how much of the change in Y value is due to the change in the X value
    - r = 0.91 mean 91% correlation

# Correlation - Is this good?



- Cannot judge
  - > All values close to normal range
  - > Nothing above 150
- Evaluate the axes when looking at correlation graphs

## Correlation – What to look for





- Assay range to 500, so spread seems OK
  - Isolated value drives correlation
- Original data set showed out of range values
  - These must be excluded before regression run
- Revised data has same issues as prior glucose results

# Accuracy - Caveats

- Data need to span the clinically important range
  - Single extreme values should be omitted
  - > Out of range values must be omitted

# Correlate does NOT mean Match

#### Bias evaluation

- Difference plot
  - > Bland Altman analysis
  - Plot either reference result or average of two methods as X
    - Reference result used when considered "truth"
      - e.g., POC electrolytes versus lab
    - Average used when "truth" is uncertain
      - e.g., ACT comparisons
  - > Plot difference between two results as Y

#### Bland-Altman Plot

- Look for bias
  - > Constant or variable?
  - Clinically significant?





#### Look for clinical differences

 Change of clinical decision limit can maintain current practice standards



Target Time change from 480 to 520 seconds

## Evaluate clinical differences

|       | LAB         |             |             |     |
|-------|-------------|-------------|-------------|-----|
| POC A | >0.1        | <0.1        |             |     |
| >0.1  | 28          | 1           | PPV         | 97% |
| <0.1  | 2           | 9           | NPV         | 82% |
|       | Sensitivity | Specificity | Concordance |     |
|       | 93%         | 90%         | 93%         |     |

|       | LAB         |             |             |      |
|-------|-------------|-------------|-------------|------|
| POC B | >0.1        | <0.1        |             |      |
| >0.1  | 18          | 0           | PPV         | 100% |
| <0.1  | 12          | 10          | NPV         | 45%  |
|       | Sensitivity | Specificity | Concordance |      |
|       | 60%         | 100%        | 70%         |      |

# Sensitivity & Specificity

- Sensitivity
  - ability of an assay to identify patients with a specific condition (true positives)
- Specificity
  - ability of an assay to identify patients without a specific condition (true negatives)
- Positive predictive value
  - likelihood that a patient with a positive result (or above the cut-off) truly has the condition
- Negative predictive value
  - likelihood that a patient with a negative result (or below the cut-off) is truly normal

## 2 x 2 Table

|                         |          | "True"                 | Result                 |                                 |
|-------------------------|----------|------------------------|------------------------|---------------------------------|
|                         |          | Positive               | Negative               |                                 |
| New<br>System<br>Result | Positive | True positive<br>(TP)  | False positive<br>(FP) | Positive predictive value (PPV) |
|                         | Negative | False<br>negative (FN) | True negative (TN)     | Negative predictive value (NPV) |
|                         |          | Sensitivity            | Specificity            | Concordance                     |

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$PPV = \frac{TP}{TP + FP}$$

$$NPV = \frac{TN}{TN + FN}$$

$$Concordance = \frac{TP + TN}{Total Sample Number}$$

## Caveat Emptor

- Qualitative tests always include sensitivity and specificity claims
  - Older products have limited clinical data
    - Only spiked samples evaluated
    - Only frozen clinical samples evaluated
    - Too few samples evaluated
  - Newer products will include confidence intervals
    - Do not want test where CI spans 50% (coin toss)

# Probability (p-value)

- Paired t-test
  - Compare the difference between paired samples
  - > Null hypothesis is tested
    - mean difference is zero
  - Means of populations compared
  - > Assume normal distribution; equal variance
- ANOVA (Analysis of Variance)
  - Compare means of groups of measurement
  - > Null hypothesis is tested
    - means of the measured variables are the same
  - Variances of populations compared
  - > Assume normal distribution; equal variance

p-value



xkcd.com 1/26/2015

## p-value

- Statistical significance can be defined at multiple levels
- For diagnostics, generally defined as
  p ≤ 0.05
  - > 95% confidence
  - > ~ <u>+</u> 2 SD from mean

# Interpreting p

- If viewing results of analysis:
  - $p \le 0.05$
  - > 0.05 < p < 0.1
  - > p > 0.1

two samples are different

? trend towards difference

two samples are the same



#### What else?

- There are as many ways to crunch data as there are people to do it.
- Keep in mind what you are looking for
  - > Clinical utility
    - statistical difference may not matter
- Understand what you want BEFORE you collect the data
  - Define studies by the information you want

#### Remember

- There are three kinds of lies: lies, damned lies and statistics.
  - Benjamin Disraeli

- Torture numbers, and they'll confess to anything.
  - Gregg Easterbrook

## **QUESTIONS?**

Marcia L. Zucker, Ph.D., FAACC ZIVD, LLC Mlzucker.zivd@gmail.com