The Current Status of Influenza Diagnostics

NORMAN MOORE, PHD
Director of Scientific Affairs, Infectious Diseases
Objectives

1. Discuss the health impacts of influenza in the US

2. Discuss the diagnostic options available for influenza

3. Discuss the biology of how an influenza infection can predispose a person to pneumococcal pneumonia
Infectious Disease had again become the third leading cause of death, and the leading cause of premature deaths. Its incidence was growing!\(^2\)

- Infectious disease mortality - downward trend in deaths (mainly because of decline in HIV/AIDS mortality)\(^3\)
- In US- “Most infectious disease deaths [about 40%] from 1980-2014 were due to influenza or pneumonia ”\(^3\)

William Stewart, the Surgeon General of the US (1965-9) has been cited as saying the U.S. was “ready to close the book on infectious disease as a major health threat...war on pestilence was won”; modern antibiotics, vaccination, and sanitation methods had done the job. (Some discussion on whether Stewart said this or not, but other leading academia did adopt this belief at the time.)\(^1\)
Average Disease Burden of Influenza A&B in the US

Annual Impact of influenza in the US

- Cases 9,200,000 – 35,600,000
- Hospitalizations up from 140,000 – 710,000
- Deaths between 12,000 – 56,000
- Influenza target population: 188MM in US

5-20% of US population affected by influenza each year

Most deaths affect elderly and young children

- Also affects otherwise healthy individuals

CDC estimates that, from **October 1, 2018**, through **February 23, 2019**, there have been:

- **20.4 million – 23.6 million** flu illnesses
- **9.5 million – 11.1 million** flu medical visits
- **252,000 – 302,000** flu hospitalizations
- **16,400 – 26,700** flu deaths

Influenza - Overview
The old thinking. . . “it’s just the flu”
A bit of history

Flu History¹:

- Flu epidemics: every 1 to 3 years for at least the last 400 years
- Pandemics (worldwide) occur around every 10 to 50 years

Hippocrates described flu back in the 5th century BC.

Columbus brought a devastating flu on his second voyage to the new world.

Proprietary and confidential — do not distribute
1918 Flu Pandemic – Spanish Flu

Spanish flu of 1918-1919 was the single greatest epidemic in history.¹

- 50 to 100 million people were killed¹ (3-6% of the world’s population!)
- Another 500 million were infected¹ (1/3 of the world’s population)

1. CDC. Influenza (Flu). 1918 Pandemic. https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html
1918 Flu Pandemic – Spanish Flu

1918 Spanish Flu Pandemic broke out during WWI. Image of WWI soldiers.

Policemen in Seattle wearing masks made by the Red Cross, during the influenza epidemic. December 1918.

National Archives at College Park, MD. Record number 165-WW-269B-25. Proprietary and confidential — do not distribute
Aren’t you supposed to build immunity to influenza?

The problem with influenza, like the common cold, is that there are many different strains.

That is also why the performance of rapid tests are different every year!
Influenza A versus Influenza B

Influenza A

- More severe disease than B
- Can cause disease in a wide variety of animals

Influenza B

- Causes a milder flu, usually in the spring months
What Can Increase Cases of Seasonal Influenza?

Vaccine Mismatch
- Vaccine is made by predicting strains for next season so may not be accurate

Multiple strains hitting at the same time
- Can have multiple strains as well as overlap of influenza A and B

Virulence of Strains
- Some strains can cause an extreme immune response
What Makes You Ache When You Have Influenza?

Influenza
- Is attacking epithelial cells in the nose, throat, and respiratory system

Body’s reaction
- Releases histamine which widens the blood vessels near infection
- Allows immune responses like antibodies to get to the infection better
- Histamines also end up in other body parts like muscles
- Cytokines are also released that help coordinate the body’s attack on virus

The problem
- Histamines and cytokines can affect pain receptors
Hypothesis On Evolution of Feeling Bad When You Are Sick

If a person is sick, he/she will stay in bed.

If a person stays in bed, he/she will be less likely to expose other people.

Should You Get the Fever Down?

Why Do You Get a Fever?
- Your immune system releases chemicals called pyrogens.
- The hypothalamus portion of the brain get the pyrogens and raises the temperature.

Increased temperature
- Can kill some bacteria.
- Can inhibit the replication of some viruses.

When you reduce the fever
- Doesn’t reduce the amount of virus.
- Research is suggesting that tens of thousands of more people can be then infected!

Do you reduce the fever?
- If too high, yes!
- If not too high. . .
Differences Between the Sexes

Women tend to generate stronger immune responses than men

• Helps clear virus faster from the system

The good

• Lower virus can shorten intensity and duration of illness
• Especially important if pregnant

The bad

• More likely to have hyperimmune response so could have higher morbidity/mortality in outbreak or pandemic
• Chronic infections (like HIV) have been linked to accelerating the aging process

Half of pregnant women protect themselves and their babies against flu. Time to bump it up!

With only half of pregnant moms getting their flu shot, too many remain unprotected.

Flu shots help protect pregnant women and their babies from potentially serious flu illness during and after pregnancy.

During the 2016-2017 flu season, an estimated 50%* of pregnant women in the U.S. protected themselves and their babies from flu by getting a flu shot. While this is a significant improvement since the years before the 2009 pandemic, about half of pregnant women and their babies, still remain unprotected from influenza.

We can do better. All pregnant women need flu shots to protect themselves and their babies.

Get vaccinated to protect yourself and your baby.

www.cdc.gov/flu/protect/vaccine/pregnant.htm

*https://www.cdc.gov/flu/fluvaxview/pregnant-women-nov2016.htm **Sources: 2007-2010 BRFSS, 2010-11-2016-17 Internet Panel Survey
Influenza Virus

- The influenza virus contains ssRNA in its core
- This is surrounded by a matrix protein membrane
- A lipid bilayer envelopes the virus
- The outer layer is studded with prominent glycoprotein spikes

Courtesy of http://micro.magnet.fsu.edu/cells/viruses/influenzavirus.html
So what is with the H and N?

H stands for hemagglutinin
- Allows virus to stick to cells
- Around 13 types

N stands for neuraminidase
- Helps release new virus from cells
- Around 9 types

Influenza A types have designations like H5N1, while influenza B viruses don’t

“Novel H1N1” is the same as swine flu

What are the issues of respiratory disease?

The symptoms of respiratory diseases are vague
- Pneumonia symptoms
 - Cough
 - Fever
 - Chills
 - Difficulty breathing
- Influenza
 - Cough
 - Fever
 - Chills
 - Malaise

Treatment is different
- **Bacteria**
 - Broad spectrum antibiotic
 - Narrow spectrum antibiotic
- **Influenza**
 - Antiviral
 - Treat symptoms only

Complications of mistreatment
- Mistreatment of bacterial etiology
 - May increase morbidity/mortality
 - May have longer hospital stay
 - May get *C. difficile*
- Mistreatment of influenza
 - May have increased resistance and *C. difficile*
Misuse of Antibiotics Can Lead to Other Medical Issues

Pneumonia may be treated with fluoroquinolone

Disrupts normal intestinal flora

O27 strain of *C. difficile* is specifically resistant to fluoroquinolone
Treating with antibiotics may worsen the effectiveness to respond to influenza.

Antibiotics can destroy the natural microbiome.

Mechanism

- Microbiota can increase interferon (IFN) signature in lung stroma cells
- Increased IFN can help slow early influenza infection
Results – Flu Negative

MD unaware, n = 92 MD aware, n = 97

Results – Flu Positive

- MD unaware, n = 106
- MD aware, n = 96

* - p ≤ 0.001

Proprietary and confidential — do not distribute
Pediatric Study

CHILDREN WHO WERE POSITIVE BY A RAPID INFLUENZA TEST WERE:

• More likely to be prescribed an antiviral

• Less likely to be prescribed an antibiotic

• Jennings et al. “Effect of Rapid Influenza Testing on the Clinical Management of Paediatric Influenza.”
Spread of Influenza

Flu is spread person-to-person through coughing or sneezing.

- Quick incubation of around 2 days

Hands can spread influenza if the person then touches their nose.

Healthy adults can infect others one day BEFORE symptoms develop and up to 5-7 days after.
Viral Shedding

- Shedding can begin 1 day before sickness
- Peak of the shedding is within first 3 days of illness
- Subsides around 5-7 days
 - Can be longer in children
Antiviral Treatment

Who gets priority for antiviral treatment?

• People who are hospitalized
• Under the age of 2 or over the age of 65
• Pregnant women
• Particular chronic or immunosuppressive conditions
• People under 19 who are receiving long-term aspirin therapy
• American Indians/Alsaka Natives
• Extremely obese, BMI ≥40
• Residents of nursing homes

1. CDC. www.cdc.gov/h1n1flu/antiviral.htm
 https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm
Ideally, antivirals should be taken within first 48 hours. Greatest benefit is when started as close to onset as possible.

- Some people do not go in on first day of symptoms.
- Treatment window can be small.
- Some influenza strains are resistant to Tamiflu.
RECOMMENDED MEDICATIONS FOR TREATMENT OF INFLUENZA:

ANTIVIRALS

• Oral oseltamivir phosphate – Tamiflu®
• Inhaled zanamivir – Relenza®
• Intravenous peramivir – Rapivab®

CAP-DEPENDENT ENDONUCLEASE INHIBITOR

• Oral baloxavir marboxil – Xofluza®

RESISTANCE

It is possible that some influenza viruses may become less susceptible or resistant to oseltamivir and peramivir during antiviral treatment with one of these drugs and remain susceptible to zanamivir; this has been reported most often for influenza A(H1N1)pdm09 viruses (Graitcer, 2011; Lackenby, 2011; Memoli, 2010; Nguyen, 2010; Nguyen, 2012) Influenza A(H1N1)pdm09 viruses have also emerged that are resistant to all neuraminidase inhibitors, including zanamivir, in highly immunosuppressed patients on prolonged neuraminidase inhibitor treatment (Tamura, 2015; L’Huillier, 2015). Resistance and reduced susceptibility of influenza viruses to antiviral drugs can also occur spontaneously, with no known exposure to antiviral medications (Hurt, 2011; Takashita, 2013; Takashita, 2014).

1. CDC. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm
How the virus changes – Shift vs. Drift

ANTIGENIC DRIFT –
Small changes in the virus that happen over time. It allows new strains that can evade the body’s immune system.

ANTIGENIC SHIFT –
An abrupt, major change that results in a new hemagglutinin and/or new hemagglutinin and neuraminidase protein.

Following influenza infection or receipt of the influenza vaccine, the body’s immune system develops antibodies that recognize and bind to “antigenic sites,” which are regions found on an influenza virus’ surface proteins. By binding to these antigenic sites, antibodies neutralize flu viruses, which prevents them from causing further infection.

1. CDC. https://www.cdc.gov/flu/professionals/laboratory/antigenic.htm
How do you make a pandemic flu?

Avian H3 → Human H3

Human H2 → Human H3
Risk factors for severe disease with novel H1N1

- Overall, similar to risk factors for seasonal influenza
- Chronic medical conditions including cardiopulmonary disease and immunosuppression
- Pregnancy
- Neurodevelopmental delay
- Obesity (this is not recognized as a risk factor for seasonal influenza)
- Extremes of age have **not** been a risk factor for H1N1

1. Courtesy of Jonathan McCullers, Department of Infectious Diseases, St. Jude Children’s Research Hospital
Natural protection against H1N1

❖ Older adults have natural protection from H1N1

- from J.A. McCullers Unpublished research
Specimen Collection
Influenza Sample Collection

Appropriate specimens
- Nasal wash/aspirate, nasopharyngeal swab, or nasal swab
- Throat swabs have dramatically reduced sensitivity

Samples should be collected within first 24 to 48 hours of symptoms since that is when viral titers are highest and antiviral therapy is effective

Testing can be done immediately with rapid test or sample placed in transport media
- Infectivity is maintained up to 5 days when stored @ 4-8°C
- If the sample cannot be evaluated in this time period, the sample should be frozen @ -70°C.
2018 IDSA Guidelines
Who Should be Tested?
Outpatients During Influenza Season¹

- High-risk patients like immune compromised
- Patients who have acute onset of respiratory symptoms that may or may not have fever or a chronic medical condition if it affects clinical management
- Patients not at risk of complications but decisions;
 - May change antiviral treatment
 - Reduce unnecessary antibiotics
 - Reduce further diagnostic testing
 - Reduce time in the emergency department
 - May influence high-risk household contacts’ treatment decisions

Who Should be Tested?
Outpatients **Not** in Influenza Season

- May consider testing acute onset respiratory symptoms with/without fever, especially if patients in high risk category or immune compromised

Who Should be Tested? Hospitalized Patients in Influenza Season¹

- Test influenza on any admissions of patients with respiratory illness with or without fever
- Test on patients that have acute worsening of chronic cardiopulmonary disease such as COPD, asthma, heart failure, or coronary artery disease
 - Influenza may exacerbate these conditions
- Test patients with acute onset of respiratory symptoms with/without fever that are immune compromised or at high risk of complications
 - Influenza in these patients may be less characteristic
- Test hospitalized patients with acute onset of respiratory symptoms with/without fever when there isn’t a clear alternative diagnosis

Who Should be Tested? Hospitalized Patients Not in Influenza Season

- Test patients on admission with acute respiratory illness with or without fever that have a epidemiological link to person with influenza, an outbreak of influenza, or an outbreak of respiratory illness with uncertain cause, or travel to an area with known influenza activity
- Consider testing children and adults who are immune compromised or at risk of complications that have an acute, febrile respiratory tract illness

Sensitivity vs Specificity vs PPV vs NPV

Sensitivity:
Probability test=positive if patient=positive

Specificity:
Probability test=negative if patient=negative

PPV: Probability patient=positive if test=positive

NPV: Probability patient=negative if test=negative
Flu is seasonal. Prevalence of the disease is different in June than in January.

This will impact the perceived performance of the test.

Test 1,000 persons
Test Specificity = 99.6% \((4/1000)\)
Prevalence = 10%

True positive: \(100\) \hspace{1cm} False positive: \(4\)

Positive predictive value: \(\frac{100}{104} = 96\%\)
How prevalence can impact perceived test performance

Test 1,000 persons

Test Specificity = 99.6% (4/1000) Prevalence = 10%
True positive: 100 False positive: 4
Positive predictive value: 100/104 = 96%

Prevalence = 0.4%

True positive: 4 False positive: 4
Positive predictive value: 4/8 = 50%
Diagnostic Methods for Influenza

- Culture
- DFA
- PCR
- Rapid Tests
Viral Culture

Pro
- Highly sensitive as long as sample is properly handled

Con
- Can’t give same day result to help monitor therapy
- High level of difficult/equipment
DFA

Pro

• Usually considered to have high level of sensitivity
• Can usually test for other respiratory pathogens at the same time
• Results can be achieved in same day

Con

• Labor intensive needed experienced users
• Turn-around time from lab usually takes many hours
Rapid Lateral Flow Tests

Pro

- Tests take minimal time
- Some tests are so simple that they can be CLIA-waived
- Can be used to triage patients
- Positive results can be used to rule out other issues like pneumonia so don’t give unnecessary chest x-ray, antibiotics, etc.

Con

- Performance is not as good as culture, PCR, and DFA
What rapid tests target

Detecting influenza A and influenza B nucleoproteins (Ag)

The nucleoproteins are conserved throughout a given species
Molecular Assays

Pro
- For respiratory specimens, high performance
- Same day results

Con
- Turn around time from lab may be extensive, especially if batching specimens
- Expensive
- May require experienced technicians, labs, dedicated equipment, etc.
Rapid Molecular Tests
Why molecular?
The power of sample amplification

Conventional non-molecular methods can have suboptimal limits of detection. Samples with low viral or bacterial load could result in a false negative.

With molecular, even a few hundred infectious particles can be amplified billions of times! Amplification increases likelihood of detection, and may compensate for suboptimal sample collection.

Positive Patient Sample

Conventional Non-Molecular Methods

Detection Threshold

False Negative

Amplified

True Positive
Advantages/Disadvantages of Molecular Assays

Advantages:
- Molecular assays are more sensitive and specific for detecting influenza viruses than other influenza tests (e.g., rapid influenza diagnostic tests, immunofluorescence, and viral cultures)

Rapid Molecular Assays

Rapid molecular assays are a new type of molecular influenza diagnostic test. These platforms use isothermal nucleic acid amplification and have high sensitivity and yield results in 15 minutes. Currently, there is only one rapid molecular assay that FDA-cleared in the United States. Additional rapid molecular assays may become available in the future. As with other molecular diagnostic tests, if treatment is clinically indicated, antiviral treatment should NOT be withheld from patients with suspected influenza while awaiting testing results during periods of peak influenza activity in the community when the likelihood of influenza is high. More information about antiviral treatment of influenza is available at Antiviral Drugs, Information for Health Care Professionals.

Technology Comparison

<table>
<thead>
<tr>
<th></th>
<th>IMMUNOASSAY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPIDS</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>LAT FLOW READERS</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>PCR</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>

Rapid

- FAST
- CONVENIENT
- POC-FRIENDLY
- ACTIONABLE RESULTS
- REMOVES SUBJECTIVITY
- CONNECTED
- EXCELLENT PERFORMANCE
Multiplexing Assays

Pros

Able to do multiple pathogens at the same time

- Many pathogens give similar symptoms
- Don’t have to do one assay at a time

Cons

Longer time than other rapid molecular

Doesn’t do well with commensal bacteria

- *S. pneumoniae* and *H. influenzae*
- *C. difficile*

Not all pathogens are created equally

- Things like influenza, RSV, and hMPV are rare in asymptomatic children and adults
- Rhinovirus and coronavirus can be present in asymptomatic patients and as part of co-infection

The Connection Between Influenza and *S. pneumoniae*
Statistics of influenza and pneumonia

Influenza pandemics of 1957 and 1968

- Bacterial etiology in roughly 70% of patients with severe pneumonia (life threatening or fatal)\(^1,2\)

Influenza hospitalizations rates (non pandemic)

- 44-57% bacterial pneumonia\(^3-6\)

Approximately 25% of influenza-related deaths have a secondary bacterial pneumonia\(^7\)

EID - Predictors of Pneumococcal Co-infection with Pandemic (H1N1)

Study in Spain
July 2009 - March 2010

- Looked at adults who had influenza-like illness and sought medical attention and had ≥ 1 risk factor for contracting influenza-related complications

EID Study- Data Collection

Samples
- Oropharyngeal and nasopharyngeal swab samples
- Urine sample
- Sputum and 2 blood cultures

Assays
- PCR for the detection of influenza
- Blood, urinary antigen, or qualified sputum for *S. pneumoniae*

EID Study – Results

418 patients were evaluated

- 179 were confirmed H1N1
- In PCR H1N1 negative, 25.1% had pneumococcal disease

Of 100 patients with influenza

- 14% had pneumococcal infection
- “Infection in more than half these patients would not have been diagnosed if a pneumococcal urinary antigen test had not been performed.”

EID Study
When Coinfection Found¹ . . .

Patients more frequently admitted to the hospital and to the intensive care unit

Had lower oxygen saturation

Had higher axillary temperature

Concurrent infection significantly increased risk of patient complications

If only looking for influenza, pneumococcal pneumonia may be missed or only looking for pneumonia, influenza may be missed.

H1N1 Pandemic with S. pneumoniae in Argentina¹

May 2009 – pandemic H1N1 had estimated fatality rate of 0.6%

- Similar to seasonal influenza

July 2009 – Argentina reported fatality rate of 4.5% (137 deaths out of 3056 cases)

- No genetic difference in virus
- S. pneumoniae associated with 56.4% of severe disease

Proposed Mechanisms

Bacterial adherence after epithelial destruction

• Autopsy evidence in 1918 outbreak with *S. aureus*¹

Neutrophil apoptosis in presence of influenza and *S. pneumoniae*²

Upregulation of molecules that *S. pneumoniae* can use as receptors

• Incubation with cytokines from viral infections³

Environmental factors

• High temperature, ATP, norepinephrine

On The Horizon

Universal influenza vaccine

New drugs that are promising to eliminate influenza in a day
Conclusions

Diagnostic technologies for respiratory infections allow more directed therapy

Biological mechanisms do exist which predispose patients with influenza to pathogens such as *S. pneumoniae*

A superinfection with bacterial pneumonia has been shown to increase morbidity/mortality in influenza infections

Testing for both influenza and bacterial pneumonia in select populations can help predict how well patients do